Timescales for detection of trends in the ocean carbon sink

被引:118
作者
McKinley, Galen A. [1 ,2 ,3 ]
Pilcher, Darren J. [1 ,4 ]
Fay, Amanda R. [3 ]
Lindsay, Keith [5 ]
Long, Matthew C. [5 ]
Lovenduski, Nicole S. [6 ,7 ]
机构
[1] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI USA
[2] Univ Wisconsin, Ctr Climat Res, Madison, WI USA
[3] Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI USA
[4] NOAA, Pacific Marine Environm Lab, 7600 Sand Point Way Ne, Seattle, WA 98115 USA
[5] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
[6] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA
[7] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
EARTH SYSTEM MODEL; SOUTHERN-OCEAN; ANTHROPOGENIC CO2; NATURAL VARIABILITY; CLIMATE; FLUXES; ATLANTIC; LEARN; CMIP5;
D O I
10.1038/nature16958
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ocean has absorbed 41 per cent of all anthropogenic carbon emitted as a result of fossil fuel burning and cement manufacture(1,2). The magnitude and the large-scale distribution of the ocean carbon sink is well quantified for recent decades(3,4). In contrast, temporal changes in the oceanic carbon sink remain poorly understood(5-7). It has proved difficult to distinguish between air-to-sea carbon flux trends that are due to anthropogenic climate change and those due to internal climate variability(5,6,8-13). Here we use a modelling approach that allows for this separation(14), revealing how the ocean carbon sink may be expected to change throughout this century in different oceanic regions. Our findings suggest that, owing to large internal climate variability, it is unlikely that changes in the rate of anthropogenic carbon uptake can be directly observed in most oceanic regions at present, but that this may become possible between 2020 and 2050 in some regions.
引用
收藏
页码:469 / 472
页数:4
相关论文
共 48 条
[1]  
[Anonymous], CMIP5 SIMULATIONS M
[2]   An update to the Surface Ocean CO2 Atlas (SOCAT version 2) [J].
Bakker, D. C. E. ;
Pfeil, B. ;
Smith, K. ;
Hankin, S. ;
Olsen, A. ;
Alin, S. R. ;
Cosca, C. ;
Harasawa, S. ;
Kozyr, A. ;
Nojiri, Y. ;
O'Brien, K. M. ;
Schuster, U. ;
Telszewski, M. ;
Tilbrook, B. ;
Wada, C. ;
Akl, J. ;
Barbero, L. ;
Bates, N. R. ;
Boutin, J. ;
Bozec, Y. ;
Cai, W. -J. ;
Castle, R. D. ;
Chavez, F. P. ;
Chen, L. ;
Chierici, M. ;
Currie, K. ;
de Baar, H. J. W. ;
Evans, W. ;
Feely, R. A. ;
Fransson, A. ;
Gao, Z. ;
Hales, B. ;
Hardman-Mountford, N. J. ;
Hoppema, M. ;
Huang, W. -J. ;
Hunt, C. W. ;
Huss, B. ;
Ichikawa, T. ;
Johannessen, T. ;
Jones, E. M. ;
Jones, S. D. ;
Jutterstrom, S. ;
Kitidis, V. ;
Koertzinger, A. ;
Landschuetzer, P. ;
Lauvset, S. K. ;
Lefevre, N. ;
Manke, A. B. ;
Mathis, J. T. ;
Merlivat, L. .
EARTH SYSTEM SCIENCE DATA, 2014, 6 (01) :69-90
[3]   A Time-Series View of Changing Surface Ocean Chemistry Due to Ocean Uptake of Anthropogenic CO2 and Ocean Acidification [J].
Bates, Nicholas R. ;
Astor, Yrene M. ;
Church, Matthew J. ;
Currie, Kim ;
Dore, John E. ;
Gonzalez-Davila, Melchor ;
Lorenzoni, Laura ;
Muller-Karger, Frank ;
Olafsson, Jon ;
Magdalena Santana-Casiano, J. .
OCEANOGRAPHY, 2014, 27 (01) :126-141
[4]  
Chylek P., 2011, Atmospheric Chemistry and Physics Discussions, V11, P22893
[5]   Development and evaluation of an Earth-System model-HadGEM2 [J].
Collins, W. J. ;
Bellouin, N. ;
Doutriaux-Boucher, M. ;
Gedney, N. ;
Halloran, P. ;
Hinton, T. ;
Hughes, J. ;
Jones, C. D. ;
Joshi, M. ;
Liddicoat, S. ;
Martin, G. ;
O'Connor, F. ;
Rae, J. ;
Senior, C. ;
Sitch, S. ;
Totterdell, I. ;
Wiltshire, A. ;
Woodward, S. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (04) :1051-1075
[6]   The CCSM4 Ocean Component [J].
Danabasoglu, Gokhan ;
Bates, Susan C. ;
Briegleb, Bruce P. ;
Jayne, Steven R. ;
Jochum, Markus ;
Large, William G. ;
Peacock, Synte ;
Yeager, Steve G. .
JOURNAL OF CLIMATE, 2012, 25 (05) :1361-1389
[7]   Communication of the role of natural variability in future North American climate [J].
Deser, Clara ;
Knutti, Reto ;
Solomon, Susan ;
Phillips, Adam S. .
NATURE CLIMATE CHANGE, 2012, 2 (11) :775-779
[8]   Uncertainty in climate change projections: the role of internal variability [J].
Deser, Clara ;
Phillips, Adam ;
Bourdette, Vincent ;
Teng, Haiyan .
CLIMATE DYNAMICS, 2012, 38 (3-4) :527-546
[9]   The oceanic anthropogenic CO2 sink: Storage, air-sea fluxes, and transports over the industrial era [J].
DeVries, Tim .
GLOBAL BIOGEOCHEMICAL CYCLES, 2014, 28 (07) :631-647
[10]   Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 [J].
Dufresne, J-L. ;
Foujols, M-A. ;
Denvil, S. ;
Caubel, A. ;
Marti, O. ;
Aumont, O. ;
Balkanski, Y. ;
Bekki, S. ;
Bellenger, H. ;
Benshila, R. ;
Bony, S. ;
Bopp, L. ;
Braconnot, P. ;
Brockmann, P. ;
Cadule, P. ;
Cheruy, F. ;
Codron, F. ;
Cozic, A. ;
Cugnet, D. ;
de Noblet, N. ;
Duvel, J-P. ;
Ethe, C. ;
Fairhead, L. ;
Fichefet, T. ;
Flavoni, S. ;
Friedlingstein, P. ;
Grandpeix, J-Y. ;
Guez, L. ;
Guilyardi, E. ;
Hauglustaine, D. ;
Hourdin, F. ;
Idelkadi, A. ;
Ghattas, J. ;
Joussaume, S. ;
Kageyama, M. ;
Krinner, G. ;
Labetoulle, S. ;
Lahellec, A. ;
Lefebvre, M-P. ;
Lefevre, F. ;
Levy, C. ;
Li, Z. X. ;
Lloyd, J. ;
Lott, F. ;
Madec, G. ;
Mancip, M. ;
Marchand, M. ;
Masson, S. ;
Meurdesoif, Y. ;
Mignot, J. .
CLIMATE DYNAMICS, 2013, 40 (9-10) :2123-2165