Metal oxide top layer as an interfacial promoter on a ZnIn2S4/TiO2 heterostructure photoanode for enhanced photoelectrochemical performance

被引:55
作者
Mahadik, Mahadeo A. [1 ]
Shinde, Pravin S. [1 ]
Cho, Min [1 ]
Jang, Jum Suk [1 ]
机构
[1] Chonbuk Natl Univ, Div Biotechnol, Adv Inst Environm & Biosci, Coll Environm & Bioresource Sci, Iksan 570752, South Korea
基金
新加坡国家研究基金会;
关键词
Metal oxide; ZnIn2S4; nanosheet; TiO2; nanorod; Hydrogen production; Heterostructure photoanode; PHOTOCATALYTIC ACTIVITY; HYDROGEN-PRODUCTION; SOLAR-CELLS; TIO2; WATER; FABRICATION; ELECTRON; MORPHOLOGY; OXIDATION; DYNAMICS;
D O I
10.1016/j.apcatb.2015.12.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We designed metal oxide coated ZnIn2S4/TiO2 (ZT) heterostructure photoanodes for enhanced photoelectrochemical performance via hydrothermal and dip-coating methods. The effects of thin metal oxide coating layers, such as TiO2, Al2O3, and SiO2, on the structural, morphological, optical, and photoelectrocatalytic activity of ZT photoanodes were investigated in detail. The metal oxide coating layers significantly enhanced the photoelectrochemical performance of ZT in the following order: SiO2/ZT>Al2O3/ZT>TiO2/ZT>ZT, all at pH 11.5 under simulated one sun illumination. A two-fold boost in the photocurrent density of ZT was recorded after a surface coating of a thin SiO2 layer among the studied metal oxide layers. The charge transfer resistance measured from the electrochemical impedance spectroscopy (EIS) analysis was less for the SiO2/ZT photoanode, indicating enhanced charge separation between the oxide surface layer and electrolyte. The enhanced photoelectrochemical performance due to the thin SiO2 coating was attributed to the improved interface properties that led to the effective charge transfer processes in the vicinity of the electrolyte. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:337 / 346
页数:10
相关论文
共 47 条
[1]   Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J].
Bach, U ;
Lupo, D ;
Comte, P ;
Moser, JE ;
Weissörtel, F ;
Salbeck, J ;
Spreitzer, H ;
Grätzel, M .
NATURE, 1998, 395 (6702) :583-585
[2]   Electronic structure study of ion-implanted Si quantum dots in a SiO2 matrix: Analysis of quantum confinement theories [J].
Barbagiovanni, E. G. ;
Goncharova, L. V. ;
Simpson, P. J. .
PHYSICAL REVIEW B, 2011, 83 (03)
[3]   Effect of MWCNT Inclusion in TiO2 Nanowire Array Film on the Photoelectrochemical Performance [J].
Chang, Menglei ;
Wu, Liangpeng ;
Li, Xinjun ;
Xu, Wei .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2012, 28 (07) :594-598
[4]   Ecofriendly hydrogen production from abundant hydrogen sulfide using solar light-driven hierarchical nanostructured ZnIn2S4 photocatalyst [J].
Chaudhari, Nilima S. ;
Bhirud, Ashwini P. ;
Sonawane, Ravindra S. ;
Nikam, Latesh K. ;
Warule, Sambhaji S. ;
Rane, Vilas H. ;
Kale, Bharat B. .
GREEN CHEMISTRY, 2011, 13 (09) :2500-2506
[5]   Segregation of oxygen vacancy at metal-HfO2 interfaces [J].
Cho, Eunae ;
Lee, Bora ;
Lee, Choong-Ki ;
Han, Seungwu ;
Jeon, Sang Ho ;
Park, Bae Ho ;
Kim, Yong-Sung .
APPLIED PHYSICS LETTERS, 2008, 92 (23)
[6]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[7]   Free standing TiO2 nanotube array electrodes with an ultra-thin Al2O3 barrier layer and TiCl4 surface modification for highly efficient dye sensitized solar cells [J].
Gao, Xianfeng ;
Guan, Dongsheng ;
Huo, Jingwan ;
Chen, Junhong ;
Yuan, Chris .
NANOSCALE, 2013, 5 (21) :10438-10446
[8]   Effect of compressive stress inducing a band gap narrowing on the photoinduced activities of sol-gel TiO2 films [J].
Ghazzal, Mohamed N. ;
Chaoui, N. ;
Genet, M. ;
Gaigneaux, Eric M. ;
Robert, D. .
THIN SOLID FILMS, 2011, 520 (03) :1147-1154
[9]   Photoelectrochemical cells [J].
Grätzel, M .
NATURE, 2001, 414 (6861) :338-344
[10]   Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production [J].
Hou, Jungang ;
Yang, Chao ;
Cheng, Huijie ;
Wang, Zheng ;
Jiao, Shuqiang ;
Zhu, Hongmin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (37) :15660-15668