Two-dimensional almost-Riemannian structures with tangency points

被引:30
作者
Agrachev, A. A. [2 ]
Boscain, U. [3 ]
Charlot, G. [4 ]
Ghezzi, R. [2 ]
Sigalotti, M. [1 ,5 ]
机构
[1] Nancy Univ, INRIA, CNRS, UMR,Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
[2] SISSA, I-34014 Trieste, Italy
[3] Ecole Polytech, Ctr Math Appl, F-91128 Palaiseau, France
[4] Univ Grenoble 1, CNRS, UMR 5582, Inst Fourier, F-38402 St Martin Dheres, France
[5] INRIA Nancy Grand Est Equipe Projet CORIDA, Nancy, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2010年 / 27卷 / 03期
关键词
3-LEVEL QUANTUM-SYSTEMS;
D O I
10.1016/j.anihpc.2009.11.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two-dimensional almost-Riemannian structures are generalized Riemannian structures on surfaces for which a local orthonormal frame is given by a Lie bracket generating pair of vector fields that can become collinear. We study the relation between the topological invariants of an almost-Riemannian structure on a compact oriented surface and the rank-two vector bundle over the surface which defines the structure. We analyse the generic case including the presence of tangency points, i.e. points where two generators of the distribution and their Lie bracket are linearly dependent. The main result of the paper provides a classification of oriented almost-Riemannian structures on compact oriented surfaces in terms of the Euler number of the vector bundle corresponding to the structure. Moreover, we present a Gauss-Bonnet formula for almost-Riemannian structures with tangency points. (C) 2009 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:793 / 807
页数:15
相关论文
共 18 条
  • [1] Agrachev A. A., 2004, Control Theory and Optimization, V87
  • [2] AGRACHEV AA, 2001, DOKL AKAD NAUK, V381, P583
  • [3] Agrachev A, 2008, DISCRETE CONT DYN-A, V20, P801
  • [4] [Anonymous], 1996, Progress in Mathematics
  • [5] Conjugate and cut loci of a two-sphere of revolution with application to optimal control
    Bonnard, Bernard
    Caillau, Jean-Baptiste
    Sinclair, Robert
    Tanaka, Minoru
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (04): : 1081 - 1098
  • [6] Boscain U, 2005, DISCRETE CONT DYN-B, V5, P957
  • [7] Optimal control in laser-induced population transfer for two- and three-level quantum systems
    Boscain, U
    Charlot, G
    Gauthier, JP
    Guérin, S
    Jauslin, HR
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) : 2107 - 2132
  • [8] Boscain U., 2005, Controle Non Lineaire et Applications: Cours Donnes a l'ecole d'ete Du Cimpa de l'Universite de Tlemcen/Sari Tewfit, P19
  • [9] BOSCAIN U, 2005, ACTES SEMINAIRE THEO, V24
  • [10] Boscain U., 2008, SEMIN THEOR SPECTR G, V25, P41