Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network

被引:433
作者
Park, Sunchung [1 ]
Lee, Chin-Mei [1 ,2 ]
Doherty, Colleen J. [1 ,2 ]
Gilmour, Sarah J. [1 ]
Kim, YongSig [1 ]
Thomashow, Michael F. [1 ,3 ]
机构
[1] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Biochem, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA
关键词
CBF regulatory pathway; low-temperature regulatory network; freezing tolerance; Arabidopsis thaliana; COLD RESPONSE PATHWAY; FALSE DISCOVERY RATE; FREEZING TOLERANCE; GENE-EXPRESSION; TRANSCRIPTION FACTORS; CIRCADIAN CLOCK; PROBE LEVEL; ACCLIMATION; DOMAIN; THALIANA;
D O I
10.1111/tpj.12796
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Exposure of Arabidopsis thaliana plants to low non-freezing temperatures results in an increase in freezing tolerance that involves action of the C-repeat binding factor (CBF) regulatory pathway. CBF1, CBF2 and CBF3, which are rapidly induced in response to low temperature, encode closely related AP2/ERF DNA-binding proteins that recognize the C-repeat (CRT)/dehydration-responsive element (DRE) DNA regulatory element present in the promoters of CBF-regulated genes. The CBF transcription factors alter the expression of more than 100 genes, known as the CBF regulon, which contribute to an increase in freezing tolerance. In this study, we investigated the extent to which cold induction of the CBF regulon is regulated by transcription factors other than CBF1, CBF2 and CBF3, and whether freezing tolerance is dependent on a functional CBF-CRT/DRE regulatory module. To address these issues we generated transgenic lines that constitutively overexpressed a truncated version of CBF2 that had dominant negative effects on the function of the CBF-CRT/DRE regulatory module, and 11 transcription factors encoded by genes that were rapidly cold-induced in parallel with the first-wave' CBF genes, and determined the effects that overexpressing these proteins had on global gene expression and freezing tolerance. Our results indicate that cold regulation of the CBF regulon involves extensive co-regulation by other first-wave transcription factors; that the low-temperature regulatory network beyond the CBF pathway is complex and highly interconnected; and that the increase in freezing tolerance that occurs with cold acclimation is only partially dependent on the CBF-CRT/DRE regulatory module. Significance Statement Evidence is presented indicating that cold-regulation of the CBF regulon, which includes genes that impart freezing tolerance, is more complex than previously thought, involving extensive co-regulation by CBF1, CBF2, CBF3 and other first-wave' transcription factors encoded by genes induced in parallel with the CBF genes.
引用
收藏
页码:193 / 207
页数:15
相关论文
共 48 条
[1]   The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism [J].
Achard, Patrick ;
Gong, Fan ;
Cheminant, Soizic ;
Alioua, Malek ;
Hedden, Peter ;
Genschik, Pascal .
PLANT CELL, 2008, 20 (08) :2117-2129
[2]   Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis [J].
Alonso-Blanco, C ;
Gomez-Mena, C ;
Llorente, F ;
Koornneef, M ;
Salinas, J ;
Martínez-Zapater, JM .
PLANT PHYSIOLOGY, 2005, 139 (03) :1304-1312
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]   Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome [J].
Bieniawska, Zuzanna ;
Espinoza, Carmen ;
Schlereth, Armin ;
Sulpice, Ronan ;
Hincha, Dirk K. ;
Hannah, Matthew A. .
PLANT PHYSIOLOGY, 2008, 147 (01) :263-279
[5]   Independent filtering increases detection power for high-throughput experiments [J].
Bourgon, Richard ;
Gentleman, Robert ;
Huber, Wolfgang .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (21) :9546-9551
[6]   Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments [J].
Breitling, R ;
Armengaud, P ;
Amtmann, A ;
Herzyk, P .
FEBS LETTERS, 2004, 573 (1-3) :83-92
[7]  
Carlson MR, 2012, AFFYMETRIX ARABIDOPS
[8]   A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis [J].
Cook, D ;
Fowler, S ;
Fiehn, O ;
Thomashow, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (42) :15243-15248
[9]  
Doherty C. J., 2008, THESIS MICHIGAN STAT
[10]   Roles for Arabidopsis CAMTA Transcription Factors in Cold-Regulated Gene Expression and Freezing Tolerance [J].
Doherty, Colleen J. ;
Van Buskirk, Heather A. ;
Myers, Susan J. ;
Thomashow, Michael F. .
PLANT CELL, 2009, 21 (03) :972-984