Integrable discretizations of the short pulse equation

被引:83
作者
Feng, Bao-Feng [1 ]
Maruno, Ken-ichi [1 ]
Ohta, Yasuhiro [2 ]
机构
[1] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78541 USA
[2] Kobe Univ, Dept Math, Kobe, Hyogo 6578501, Japan
关键词
SINE-GORDON EQUATION; NONLINEAR MEDIA;
D O I
10.1088/1751-8113/43/8/085203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we propose integrable semi-discrete and full-discrete analogues of the short pulse (SP) equation. The key construction is the bilinear form and determinant structure of solutions of the SP equation. We also give the determinant formulas of N-soliton solutions of the semi-discrete and full-discrete analogues of the SP equations, from which the multi-loop and multi-breather solutions can be generated. In the continuous limit, the full-discrete SP equation converges to the semi-discrete SP equation, and then to the continuous SP equation. Based on the semi- discrete SP equation, an integrable numerical scheme, i.e. a self-adaptive moving mesh scheme, is proposed and used for the numerical computation of the short pulse equation.
引用
收藏
页数:14
相关论文
共 27 条
[11]  
HIROTA R, 1988, PROG THEOR PHYS SUPP, P42, DOI 10.1143/PTPS.94.42
[13]  
Hirota R., 2004, The Direct Method in Soliton Theory
[14]   Bilinearization and casorati determinant solution to the non-autonomous discrete KdV equation [J].
Kajiwara, Kenji ;
Ohta, Yasuhiro .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (05)
[15]   On two-loop soliton solution of the Schafer-Wayne short-pulse equation using Hirota's method and Hodnett-Moloney approach [J].
Kuetche, V. K. ;
Bouetou, T. B. ;
Kofane, T. C. .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 (02)
[16]  
KUETCHE VK, 2007, J PHYS A, V40, P5585
[17]  
Levi D., 1998, CRM P LECT NOTES, V25
[18]  
MARUNO K, 2009, ARXIV09081800
[19]   Multiloop soliton and multibreather solutions of the short pulse model equation [J].
Matsuno, Yoshimasa .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 (08)
[20]  
MIKHAILOV AV, 1979, JETP LETT+, V30, P414