A new semi-analytical collocation method for solving multi-term fractional partial differential equations with time variable coefficients

被引:53
作者
Reutskiy, S. Yu. [1 ,2 ]
机构
[1] Hohai Univ, Coll Mech & Mat, Nanjing 210098, Jiangsu, Peoples R China
[2] Natl Acad Sci Ukraine, Inst Tech Problems Magnetism, UA-61106 Kharkov, Ukraine
关键词
Time fractional equations; Numerical solution; Wave-diffusion equation; Time-fractional telegraph equation; Fractional sub-diffusion equations; DIFFUSION-WAVE EQUATION; RADIAL BASIS FUNCTIONS; NONLINEAR SOURCE-TERM; NUMERICAL-SOLUTION; SUBDIFFUSION EQUATION; ANOMALOUS DIFFUSION; HIGH-ORDER; ALGORITHMS;
D O I
10.1016/j.apm.2016.12.029
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aim of this paper is to present a new numerical method for solving a wide class of fractional partial differential equations (FPDEs) such as wave-diffusion equations, modified anomalous fractional sub-diffusion equations, time-fractional telegraph equations. The proposed method is based on the Fourier series expansion along the spatial coordinate which transforms the original equation into a sequence of multi-term fractional ordinary differential equations (ODEs). These fractional equations are solved by the use of a new efficient numerical technique the backward substitution method. The numerical examples confirm the high accuracy and efficiency of the proposed numerical scheme in solving FPDEs with variable in time coefficients. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:238 / 254
页数:17
相关论文
共 38 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]  
Atanackovic T.M., 2014, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes
[3]   A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations [J].
Bhrawy, A. H. ;
Doha, E. H. ;
Baleanu, D. ;
Ezz-Eldien, S. S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :142-156
[4]   Fractional diffusion in inhomogeneous media [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (42) :L679-L684
[5]   Numerical Solution of Fractional Diffusion-Wave Equation [J].
Chen, An ;
Li, Changpin .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (01) :19-39
[6]   The analytical solution and numerical solution of the fractional diffusion-wave equation with damping [J].
Chen, J. ;
Liu, F. ;
Anh, V. ;
Shen, S. ;
Liu, Q. ;
Liao, C. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) :1737-1748
[7]   Fractional diffusion equations by the Kansa method [J].
Chen, Wen ;
Ye, Linjuan ;
Sun, Hongguang .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1614-1620
[8]   Anomalous diffusion modeling by fractal and fractional derivatives [J].
Chen, Wen ;
Sun, Hongguang ;
Zhang, Xiaodi ;
Korosak, Dean .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1754-1758
[9]   Compact finite difference method for the fractional diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) :7792-7804
[10]   An approximate analytical solution of time-fractional telegraph equation [J].
Das, S. ;
Vishal, K. ;
Gupta, P. K. ;
Yildirim, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (18) :7405-7411