A quantum dynamics study of the hyperfluorescence mechanism

被引:25
作者
Giret, Yvelin [1 ]
Eng, Julien [1 ]
Pope, Thomas [1 ]
Penfold, Thomas [1 ]
机构
[1] Newcastle Univ, Chem Sch Nat & Environm Sci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
英国工程与自然科学研究理事会;
关键词
LIGHT-EMITTING-DIODES; ACTIVATED DELAYED FLUORESCENCE; EFFICIENCY; ENERGY; COMPLEXES; SENSITIZER; DESIGN; STATE;
D O I
10.1039/d0tc04225k
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Triplet state harvesting using thermally-activated delayed fluorescence (TADF) combined with efficient Forster resonant energy transfer (FRET) to a narrow fluorescent emitter is seen as a promising approach to achieve high efficiency and colour-purity in organic light-emitting diodes (OLEDs). In this work, we perform quantum chemistry and quantum dynamics simulations to model the so-called hyperfluorescence (HF) process between a carbene-metal-amide (CMA) molecule with a Au bridging metal (Au-Cz) and a narrow blue fluorescent emitter, 2,5,8,11-tetra-tert-butylperylene (TBPe). Our quantum dynamics simulations illustrate a FRET rate of similar to 10(10) s(-1) indicating that it occurs on the picosecond timescale comparable with the ISC crossing rate of Au-Cz. This high FRET rate, which is most strongly dependent on the energy difference between the S-1 states of the donor and acceptor molecules, is advantageous for devices as it encourages rapid triplet harvesting. In addition, the comparable FRET and intersystem crossing (ISC) rates, in contrast to most organic only systems, would facilitate studying this mechanism using photoexcitation. Besides the FRET rate, Forster radii are also estimated from the quantum dynamics simulations for different energy differences between the donor and acceptor molecules and are in quantitative agreement with the experimental estimations for different systems, showing that quantum nuclear dynamics simulation could be an important tool for enhancing our understanding of hyperfluorescence-based emitters.
引用
收藏
页码:1362 / 1369
页数:8
相关论文
共 45 条
[1]   Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J].
Adachi, C ;
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5048-5051
[2]   Third-generation organic electroluminescence materials [J].
Adachi, Chihaya .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2014, 53 (06)
[3]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[4]   Spin-Dependent Exciton Funneling to a Dendritic Fluorophore Mediated by a Thermally Activated Delayed Fluorescence Material as an Exciton-Harvesting Host [J].
Aizawa, Naoya ;
Shikita, So ;
Yasuda, Takuma .
CHEMISTRY OF MATERIALS, 2017, 29 (16) :7014-7022
[5]   ENERGY-ADJUSTED ABINITIO PSEUDOPOTENTIALS FOR THE 2ND AND 3RD ROW TRANSITION-ELEMENTS [J].
ANDRAE, D ;
HAUSSERMANN, U ;
DOLG, M ;
STOLL, H ;
PREUSS, H .
THEORETICA CHIMICA ACTA, 1990, 77 (02) :123-141
[6]  
[Anonymous], 2007, HIGHLY EFFICIENT OLE
[7]   Excitonic singlet-triplet ratio in a semiconducting organic thin film [J].
Baldo, MA ;
O'Brien, DF ;
Thompson, ME ;
Forrest, SR .
PHYSICAL REVIEW B, 1999, 60 (20) :14422-14428
[8]   The multiconfiguration time-dependent Hartree (MCTDH) method:: a highly efficient algorithm for propagating wavepackets [J].
Beck, MH ;
Jäckle, A ;
Worth, GA ;
Meyer, HD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 324 (01) :1-105
[9]   High-performance light-emitting diodes based on carbene-metal-amides [J].
Di, Dawei ;
Romanov, Alexander S. ;
Yang, Le ;
Richter, Johannes M. ;
Rivett, Jasmine P. H. ;
Jones, Saul ;
Thomas, Tudor H. ;
Jalebi, Mojtaba Abdi ;
Friend, Richard H. ;
Linnolahti, Mikko ;
Bochmann, Manfred ;
Credgington, Dan .
SCIENCE, 2017, 356 (6334) :159-163
[10]   Photophysics of thermally activated delayed fluorescence molecules [J].
Dias, Fernando B. ;
Penfold, Thomas J. ;
Monkman, Andrew P. .
METHODS AND APPLICATIONS IN FLUORESCENCE, 2017, 5 (01)