A note on a certain subclass of analytic functions defined by multiplier transformation

被引:0
作者
Lupas, Alina Alb [1 ]
机构
[1] Univ Oradea, Dept Math & Comp Sci, Oradea 410087, Romania
关键词
differential subordination; convex function; best dominant; differential operator; convolution product; UNIVALENT-FUNCTIONS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the present paper we define a new operator, by means of convolution product between Ruscheweyh operator and the multiplier transformation I (m, lambda, l). For functions f belonging to the class A we define the differential operator IR(lambda,l)(m) : A -> A, IR(lambda,l)(m) f(z) := (I (m, lambda, l) * R(m)) f (z) where A(n) = {f is an element of H(U): f(z) = z + a(n+1)z(n+1) + ..., z is an element of U} is the class of normalized analytic functions with A(1) = A. We study certain differential subordinations regarding the operator IR(lambda,l)(m).
引用
收藏
页码:369 / 373
页数:5
相关论文
共 7 条
[1]  
Al-Oboudi FM., 2004, Int. J. Math. Sci, V27, P1429, DOI DOI 10.1155/S0161171204108090
[2]  
Cata A., 2007, P INT S GEOMETRIC FU, P241
[3]  
LUPAS AA, 2008, P INT C COM IN PRESS
[4]  
LUPAS AA, CERTAIN DIFFER UNPUB
[5]  
Miller S. S., 2000, Monographs and Textbooks in Pure and Applied Mathematics, V225
[6]   NEW CRITERIA FOR UNIVALENT FUNCTIONS [J].
RUSCHEWEYH, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 49 (01) :109-115
[7]  
SALAGEAN GS, 1983, LECT NOTES MATH, V1013, P362