Supervised Domain Adaptation for Automated Semantic Segmentation of the Atrial Cavity

被引:4
作者
Saiz-Vivo, Marta [1 ]
Colomer, Adrian [1 ]
Fonfria, Carles [2 ]
Marti-Bonmati, Luis [2 ,3 ]
Naranjo, Valery [1 ]
机构
[1] Univ Politecn Valencia, Inst Invest & Innovac Bioingn, Valencia 46022, Spain
[2] La Fe Univ & Polytech Hosp, Radiol Dept, Valencia 46026, Spain
[3] La Fe Hlth Res Inst, Biomed Imaging Res Grp GIBI230 PREBI, Valencia 46026, Spain
关键词
supervised domain adaptation; MRI sequences; atrial geometry; semantic segmentation; FIBRILLATION; MODEL;
D O I
10.3390/e23070898
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Atrial fibrillation (AF) is the most common cardiac arrhythmia. At present, cardiac ablation is the main treatment procedure for AF. To guide and plan this procedure, it is essential for clinicians to obtain patient-specific 3D geometrical models of the atria. For this, there is an interest in automatic image segmentation algorithms, such as deep learning (DL) methods, as opposed to manual segmentation, an error-prone and time-consuming method. However, to optimize DL algorithms, many annotated examples are required, increasing acquisition costs. The aim of this work is to develop automatic and high-performance computational models for left and right atrium (LA and RA) segmentation from a few labelled MRI volumetric images with a 3D Dual U-Net algorithm. For this, a supervised domain adaptation (SDA) method is introduced to infer knowledge from late gadolinium enhanced (LGE) MRI volumetric training samples (80 LA annotated samples) to a network trained with balanced steady-state free precession (bSSFP) MR images of limited number of annotations (19 RA and LA annotated samples). The resulting knowledge-transferred model SDA outperformed the same network trained from scratch in both RA (Dice equals 0.9160) and LA (Dice equals 0.8813) segmentation tasks.
引用
收藏
页数:16
相关论文
共 43 条
[1]  
Caizi Li, 2019, Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. 9th International Workshop, STACOM 2018. Held in Conjunction with MICCAI 2018. Revised Selected Papers: Lecture Notes in Computer Science (LNCS 11395), P255, DOI 10.1007/978-3-030-12029-0_28
[2]  
Cardiac Atlas Project, LEFT ATR SEGM CHALL
[3]   Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis [J].
Cheplygina, Veronika ;
de Bruijne, Marleen ;
Pluim, Josien P. W. .
MEDICAL IMAGE ANALYSIS, 2019, 54 :280-296
[4]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[5]   Semi-Automatic Corpus Callosum Segmentation and 3D Visualization Using Active Contour Methods [J].
Ciecholewski, Marcin ;
Spodnik, Jan H. .
SYMMETRY-BASEL, 2018, 10 (11)
[6]   Supervised domain adaptation of decision forests: Transfer of models trained in vitro for in vivo intravascular ultrasound tissue characterization [J].
Conjeti, Sailesh ;
Katouzian, Amin ;
Roy, Abhijit Guha ;
Peter, Loic ;
Sheet, Debdoot ;
Carlier, Stephane ;
Laine, Andrew ;
Navab, Nassir .
MEDICAL IMAGE ANALYSIS, 2016, 32 :1-17
[7]  
Ghafoorian Mohsen, 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10435, P516, DOI 10.1007/978-3-319-66179-7_59
[8]   Multimodality imaging of left atrium in patients with atrial fibrillation [J].
Guglielmo, Marco ;
Baggiano, Andrea ;
Muscogiuri, Giuseppe ;
Fusini, Laura ;
Andreini, Daniele ;
Mushtaq, Saima ;
Conte, Edoardo ;
Annoni, Andrea ;
Formenti, Alberto ;
Mancini, Elisabetta Maria ;
Gripari, Paola ;
Guaricci, Andrea Igoren ;
Rabbat, Mark G. ;
Pepi, Mauro ;
Pontone, Gianluca .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2019, 13 (06) :340-346
[9]   Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts [J].
Hansen, Brian J. ;
Zhao, Jichao ;
Csepe, Thomas A. ;
Moore, Brandon T. ;
Li, Ning ;
Jayne, Laura A. ;
Kalyanasundaram, Anuradha ;
Lim, Praise ;
Bratasz, Anna ;
Powell, Kimerly A. ;
Simonetti, Orlando P. ;
Higgins, Robert S. D. ;
Kilic, Ahmet ;
Mohler, Peter J. ;
Janssen, Paul M. L. ;
Weiss, Raul ;
Hummel, John D. ;
Fedorov, Vadim V. .
EUROPEAN HEART JOURNAL, 2015, 36 (35) :2390-2401
[10]  
Hofer C, 2017, I S BIOMED IMAGING, P441, DOI 10.1109/ISBI.2017.7950556