ERROR ESTIMATES OF RUNGE-KUTTA DISCONTINUOUS GALERKIN METHODS FOR THE VLASOV-MAXWELL SYSTEM

被引:6
|
作者
Yang, He [1 ]
Li, Fengyan [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2015年 / 49卷 / 01期
基金
美国国家科学基金会;
关键词
Vlasov-Maxwell system; Runge-Kutta discontinuous Galerkin methods; error estimates; NUMERICAL RESOLUTION; SMOOTH SOLUTIONS; SIMULATION;
D O I
10.1051/m2an/2014025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, error analysis is established for Runge-Kutta discontinuous Galerkin (RKDG) methods to solve the Vlasov-Maxwell system. This nonlinear hyperbolic system describes the time evolution of collisionless plasma particles of a single species under the self-consistent electromagnetic field, and it models many phenomena in both laboratory and astrophysical plasmas. The methods involve a third order TVD Runge-Kutta discretization in time and upwind discontinuous Galerkin discretizations of arbitrary order in phase domain. With the assumption that the exact solutions have sufficient regularity, the L-2 errors of the particle number density function as well as electric and magnetic fields at any given time T are bounded by Chk(+1/2) + C tau(3) under a CFL condition tau/h <= gamma H. ere k is the polynomial degree used in phase space discretization, satisfying k > d(x)+ 1/2 (with d(x) being the dimension of spatial domain), tau is the time step, and h is the maximum mesh size in phase space. Both C and gamma are positive constants independent of h and tau, and they may depend on the polynomial degree k, time T, the size of the phase domain, certain mesh parameters, and some Sobolev norms of the exact solution. The analysis can be extended to RKDG methods with other numerical fluxes and to RKDG methods solving relativistic Vlasov-Maxwell equations.
引用
收藏
页码:69 / 99
页数:31
相关论文
共 50 条
  • [1] Discontinuous Galerkin Methods for Relativistic Vlasov-Maxwell System
    Yang, He
    Li, Fengyan
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (2-3) : 1216 - 1248
  • [2] DISCONTINUOUS GALERKIN METHODS FOR THE VLASOV-MAXWELL EQUATIONS
    Cheng, Yingda
    Gamba, Irene M.
    Li, Fengyan
    Morrison, Philip J.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) : 1017 - 1049
  • [3] Sparse grid discontinuous Galerkin methods for the Vlasov-Maxwell system
    Tao Z.
    Guo W.
    Cheng Y.
    Journal of Computational Physics: X, 2019, 3
  • [4] Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws
    Zhang, Q
    Shu, CW
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) : 641 - 666
  • [5] Error estimates for the Runge-Kutta discontinuous galerkin method for the transport equation with discontinuous initial data
    Cockburn, Bernardo
    Guzman, Johnny
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) : 1364 - 1398
  • [6] Energy-conserving discontinuous Galerkin methods for the Vlasov-Maxwell system
    Cheng, Yingda
    Christlieb, Andrew J.
    Zhong, Xinghui
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 279 : 145 - 173
  • [7] IMPLICIT RUNGE-KUTTA METHODS AND DISCONTINUOUS GALERKIN DISCRETIZATIONS FOR LINEAR MAXWELL'S EQUATIONS
    Hochbruck, Marlis
    Pazur, Tomislav
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 485 - 507
  • [8] A Priori error estimates of Runge-Kutta discontinuous Galerkin schemes to smooth solutions of fractional
    Leotta, Fabio
    Giesselmann, Jan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (04) : 1301 - 1315
  • [9] Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods
    Akrivis, Georgios
    Makridakis, Charalambos
    Nochetto, Ricardo H.
    NUMERISCHE MATHEMATIK, 2009, 114 (01) : 133 - 160
  • [10] RUNGE-KUTTA METHODS WITH GLOBAL ERROR ESTIMATES
    DALLERIVE, L
    PASCIUTTI, F
    JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1975, 16 (03): : 381 - 386