NEW ALGEBRAIC PROPERTIES OF AN AMALGAMATED ALGEBRA ALONG AN IDEAL

被引:60
作者
D'Anna, Marco [1 ]
Finocchiaro, Carmelo A. [2 ]
Fontana, Marco [2 ]
机构
[1] Univ Catania, Catania, Italy
[2] Univ Rome Tre, I-00146 Rome, Italy
关键词
Cohen-Macaulay; D plus M construction; Embedding dimension; Gorenstein; Idealization; Krull dimension; Pullback; Zariski topology; DUPLICATION; RING; CONSTRUCTION; EXTENSIONS;
D O I
10.1080/00927872.2015.1033628
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f : A -> B be a ring homomorphism, and let J be an ideal of B. In this article, we study the amalgamation of A with B along J with respect to f (denoted by A (sic)(f)J), a construction that provides a general frame for studying the amalgamated duplication of a ring along an ideal, introduced by D'Anna and Fontana in 2007, and other classical constructions (such as the A + XB[X], the A + XB[[X]] and the D + M constructions). In particular, we completely describe the prime spectrum of the amalgamation A (sic)(f)J and, when it is a local Noetherian ring, we study its embedding dimension and when it turns to be a Cohen-Macaulay ring or a Gorenstein ring.
引用
收藏
页码:1836 / 1851
页数:16
相关论文
共 26 条
[1]   Connected sums of Gorenstein local rings To Gerson Levin, on his seventieth birthday [J].
Ananthnarayan, H. ;
Avramov, Luchezar L. ;
Moore, W. Frank .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 667 :149-176
[2]  
Anderson D. R., 2006, ELECT J DIFFERENTIAL, V2006, P1
[3]  
[Anonymous], 2006, London Math. Soc. Lecture Note Ser.
[4]  
Atiyah M. F., 1969, Introduction to Commutative Algebra
[5]  
Aung P. P., 2014, ARXIV14081123
[6]   A CONSTRUCTION OF QUASI-GORENSTEIN RINGS [J].
Bagheri, Amir ;
Salimi, Maryam ;
Tavasoli, Elham ;
Yassemi, Siamak .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (01)
[7]   CPI-EXTENSIONS - OVERRINGS OF INTEGRAL DOMAINS WITH SPECIAL PRIME SPECTRUMS [J].
BOISEN, MB ;
SHELDON, PB .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1977, 29 (04) :722-737
[8]  
Bruns W, 1993, COHEN MACAULAY RINGS
[9]   PRUFER CONDITIONS IN AN AMALGAMATED DUPLICATION OF A RING ALONG AN IDEAL [J].
Chhiti, M. ;
Jarrar, M. ;
Kabbaj, S. ;
Mahdou, N. .
COMMUNICATIONS IN ALGEBRA, 2015, 43 (01) :249-261
[10]  
D'Anna M., 2009, COMMUTATIVE ALGEBRA