Synthesis, structural characterization, and electrophosphorescent properties of Rhenium(I) complexes containing carrier-transporting groups

被引:99
作者
Si, Zhenjun
Li, Jiang
Li, Bin [1 ]
Zhao, Feifei
Liu, Shiyong
Li, Wenlian
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Key Lab Excited State Proc, Changchun 130033, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Changchun 130033, Peoples R China
[3] Jilin Univ, State Key Lab Integrated Optoelect, Changchun 130023, Peoples R China
关键词
D O I
10.1021/ic061645o
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Two novel diimine rhenium(I) carbonyl complexes with the formula [Re(CO)(3)(L)Br], where L = 1-(4-5'-phenyl-1,3,4-oxadiazolylbenzyl)-2-pyridinylbenzoimidazole (1) and 1-(4-carbazolylbutyl)-2-pyridinylbenzoimidazole (2), have been successfully synthesized and characterized by elemental analysis, H-1 NMR, and IR spectra. Their electrochemical, photophysical, and electroluminescent behaviors, along with the X-ray crystal structure analysis of 2, are also described. White electrophosphorescent devices were fabricated using 1 and 2 as emitters. The devices based on carbazole-containing (hole-transporting group) 2 with the structure ITO/m-MTDATA (30 nm)/NPB (20 nm)/2:CBP (8%, 30 nm)/Bphen (20 nm)/Alq(3) (20 nm)/LiF (0.8 nm)/Al (200 nm) exhibit Commission Internationale de L'Eclairage coordinates of x = 0.34, y = 0.33 with a maximum brightness of 2300 cd/m(2) at 580 mA/cm(2). When a brightness of 1500 cd/m(2) appears at 230 mA/cm(2), the devices based on 10 wt % 2 still possess 56% of the maximum efficiency which appeared at 2.7 mA/cm(2). These performances are among the best reported for devices using Re(I) complexes as emitters. By comparison of the electroluminescent properties of the devices based on 1 and 2, we conclude that the introduction of the carbazole group into the ligand improves the performance of 1-doped devices.
引用
收藏
页码:6155 / 6163
页数:9
相关论文
共 66 条
[1]   High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials [J].
Adachi, C ;
Baldo, MA ;
Forrest, SR ;
Thompson, ME .
APPLIED PHYSICS LETTERS, 2000, 77 (06) :904-906
[2]   Electrochemical properties and electronic structures of conjugated polyquinolines and polyanthrazolines [J].
Agrawal, AK ;
Jenekhe, SA .
CHEMISTRY OF MATERIALS, 1996, 8 (02) :579-589
[3]   Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J].
Baldo, MA ;
Lamansky, S ;
Burrows, PE ;
Thompson, ME ;
Forrest, SR .
APPLIED PHYSICS LETTERS, 1999, 75 (01) :4-6
[4]   Highly efficient phosphorescent emission from organic electroluminescent devices [J].
Baldo, MA ;
O'Brien, DF ;
You, Y ;
Shoustikov, A ;
Sibley, S ;
Thompson, ME ;
Forrest, SR .
NATURE, 1998, 395 (6698) :151-154
[5]  
BARD AJ, 1980, ELECTROCHEMICAL METH
[6]  
BERGER S, 1998, INORG CHEM
[7]  
Bernhard S, 2002, ADV MATER, V14, P433, DOI 10.1002/1521-4095(20020318)14:6<433::AID-ADMA433>3.0.CO
[8]  
2-W
[9]   Green light-emitting solid-state electrochemical cell obtained from a homoleptic iridium(III) complex containing ionically charged ligands [J].
Bolink, HJ ;
Cappelli, L ;
Coronado, E ;
Parham, A ;
Stössel, P .
CHEMISTRY OF MATERIALS, 2006, 18 (12) :2778-2780
[10]   Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes:: Tuning the HOMO level without influencing the triplet energy in small molecules [J].
Brunner, K ;
van Dijken, A ;
Börner, H ;
Bastiaansen, JJAM ;
Kiggen, NMM ;
Langeveld, BMW .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (19) :6035-6042