Substrate-Dependent Morphology and Its Effect on Electrical Mobility of Doped Poly(3,4-ethylenedioxythiophene) (PEDOT) Thin Films

被引:37
作者
Franco-Gonzalez, Juan Felipe [1 ,2 ]
Rolland, Nicolas [1 ]
Zozoulenko, Igor V. [1 ]
机构
[1] Linkoping Univ, Dept Sci & Technol, Lab Organ Elect, SE-60174 Norrkoping, Sweden
[2] Autonomous Univ Madrid, Med Campus,C Arzobispo Morcillo 4,Lab 3, E-28049 Madrid, Spain
基金
瑞典研究理事会;
关键词
PEDOT; computational microscopy; molecular dynamics simulations; thin films; electrical mobility; silicon; substrate; graphite; CHARGE-TRANSPORT; MOLECULAR-DYNAMICS; IN-SITU; MICROSTRUCTURE; AGGREGATION; SCATTERING; CHEMISTRY; ELECTRODE; POLYMERS;
D O I
10.1021/acsami.8b08774
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Deposition dynamics, crystallization, molecular packing, and electronic mobility of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films are affected by the nature of the substrate. Computational microscopy has been carried out to reveal the morphology-substrate dependence for PEDOT thin films doped with molecular tosylate deposited on different substrates including graphite, Si3N4, silicon, and amorphous SiO2. It is shown that the substrate is instrumental in formation of the lamellar structure. PEDOT films on the ordered substrates (graphite, Si3N4, and silicon) exhibit preferential face-on orientation, with graphite showing the most ordered and pronounced face-on packing. In contrast, PEDOT on amorphous SiO2 exhibits the dominant edge-on orientation, except in the dry state where both packings are equally presented. The role of water and the porosity of the substrate in formation of the edge-on structure on SiO2 is outlined. On the basis of the calculated morphology, the multiscale calculations of the electronic transport and percolative analysis are performed outlining how the character of the substrate affects the electron mobility. It is demonstrated that good crystallinity (PEDOT on graphite substrate) and high content of edge-on (PEDOT on SiO2 substrate) are not enough to achieve the highest electrical in-plane mobility. Instead, the least ordered material with lower degree of the edge-on content (PEDOT on silicon substrate) provides the highest mobility because it exhibits an efficient network of pi-pi stacked chain extending throughout the entire sample.
引用
收藏
页码:29115 / 29126
页数:12
相关论文
共 71 条
[1]   Structure of thin films of poly(3,4-ethylenedioxythiophene) [J].
Aasmundtveit, KE ;
Samuelsen, EJ ;
Pettersson, LAA ;
Inganäs, O ;
Johansson, T ;
Feidenhans, R .
SYNTHETIC METALS, 1999, 101 (1-3) :561-564
[2]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[3]  
[Anonymous], MOLTEMPLATE
[4]  
Berendsen H., 1981, INTERMOLECULAR FORCE, P331, DOI [DOI 10.1007/978-94-015-7658-121, DOI 10.1007/978-94-015-7658-1_21]
[5]   Organic semiconductors:: A theoretical characterization of the basic parameters governing charge transport [J].
Brédas, JL ;
Calbert, JP ;
da Silva, DA ;
Cornil, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :5804-5809
[6]   Recent advances in the synthesis of conducting polymers from the vapour phase [J].
Brooke, Robert ;
Cottis, Philip ;
Talemi, Pejman ;
Fabretto, Manrico ;
Murphy, Peter ;
Evans, Drew .
PROGRESS IN MATERIALS SCIENCE, 2017, 86 :127-146
[7]  
Bubnova O, 2014, NAT MATER, V13, P190, DOI [10.1038/nmat3824, 10.1038/NMAT3824]
[8]   RETRACTED: Towards polymer-based organic thermoelectric generators (Retracted Article) [J].
Bubnova, Olga ;
Crispin, Xavier .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9345-9362
[9]   Virtual diffraction analysis of Ni [010] symmetric tilt grain boundaries [J].
Coleman, S. P. ;
Spearot, D. E. ;
Capolungo, L. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2013, 21 (05)
[10]   Charge transport in organic semiconductors [J].
Coropceanu, Veaceslav ;
Cornil, Jerome ;
da Silva Filho, Demetrio A. ;
Olivier, Yoann ;
Silbey, Robert ;
Bredas, Jean-Luc .
CHEMICAL REVIEWS, 2007, 107 (04) :926-952