Comparative Study of the Cathode and Anode Performance of Li2MnSiO4 for Lithium-Ion Batteries

被引:19
作者
Liu, Shuang-Shuang [1 ,3 ]
Song, Li-Jun [1 ,3 ]
Yu, Bao-Jun [2 ,3 ]
Wang, Cheng-Yang [2 ,3 ]
Li, Ming-Wei [1 ,3 ]
机构
[1] Tianjin Univ, Dept Chem, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Sch Chem Engn & Technol, Minist Educ, Key Lab Green Chem Technol, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
关键词
Lithium manganese orthosilicate; Anode material; Cathode material; Lithium-ion battery; SOLID-STATE SYNTHESIS; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; GEL METHOD; CARBON; NANOCOMPOSITE; NANOPARTICLES; ACID; FE; SUBSTITUTION;
D O I
10.1016/j.electacta.2015.11.144
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Carbon-coated Li2MnSiO4 nanocrystallites are synthesized via a solid state reaction, and their cathode and anode performance is comparatively studied. The Li2MnSiO4 cathode shows an initial charge/discharge capacity of 405/134 mAh g(-1) at a current density of 16.6 mA g(-1), and a low charge/discharge capacity of 93/66 mAh g(-1) during the 20th cycle. Partial Li2MnSiO4 cathode decomposes at 4.56 V (vs Lr+/Li) during the initial charge. Interestingly, the Li2MnSiO4 anode exhibits a high initial discharge/charge capacity of 658/388 mAh g(-1) at a current density of 20 mA g(-1), and a discharge/charge capacity of 459/456 mAh g(-1) during the 50th cycle. Li2MnSiO4 anodes also have stable and good rate capabilities. The Li2MnSiO4 crystallites as anode decompose during cycling, and their capacity increases simultaneously. It is proposed that Li2MnSiO4 anode converts energy via a reversible conversion reaction. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:145 / 152
页数:8
相关论文
共 44 条
[1]   A novel approach to employ Li2MnSiO4 as anode active material for lithium batteries [J].
Aravindan, V. ;
Karthikeyan, K. ;
Amaresh, S. ;
Kim, H. S. ;
Chang, D. R. ;
Lee, Y. S. .
IONICS, 2011, 17 (01) :3-6
[2]   Size controlled synthesis of Li2MnSiO4 nanoparticles: Effect of calcination temperature and carbon content for high performance lithium batteries [J].
Aravindan, V. ;
Ravi, S. ;
Kim, W. S. ;
Lee, S. Y. ;
Lee, Y. S. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 355 (02) :472-477
[3]   On-demand design of polyoxianionic cathode materials based on electronegativity correlations:: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni) [J].
Arroyo-de Dompablo, M. E. ;
Armand, M. ;
Tarascon, J. M. ;
Amador, U. .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (08) :1292-1298
[4]   On the energetic stability and electrochemistry of Li2MnSiO4 polymorphs [J].
Arroyo-deDompablo, M. E. ;
Dominko, R. ;
Gallardo-Amores, J. M. ;
Dupont, L. ;
Mali, G. ;
Ehrenberg, H. ;
Jamnik, J. ;
Moran, E. .
CHEMISTRY OF MATERIALS, 2008, 20 (17) :5574-5584
[5]   In Situ Carbon Coated Li2MnSiO4/C Composites as Cathodes for Enhanced Performance Li-Ion Batteries [J].
Bhaskar, Akkisetty ;
Deepa, Melepurath ;
Rao, T. N. ;
Varadaraju, U. V. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (12) :A1954-A1960
[6]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[7]   SiO2-coated sulfur particles with mildly reduced graphene oxide as a cathode material for lithium-sulfur batteries [J].
Campbell, Brennan ;
Bell, Jeffrey ;
Bay, Hamed Hosseini ;
Favors, Zachary ;
Ionescu, Robert ;
Ozkan, Cengiz S. ;
Ozkan, Mihrimah .
NANOSCALE, 2015, 7 (16) :7051-7055
[8]   Sol-gel derived nanostructured Li2MnSiO4/C cathode with high storage capacity [J].
Devaraj, S. ;
Kuezma, M. ;
Ng, C. T. ;
Balaya, P. .
ELECTROCHIMICA ACTA, 2013, 102 :290-298
[9]   Li2MSiO4 (M = Fe and/or Mn) cathode materials [J].
Dominko, R. .
JOURNAL OF POWER SOURCES, 2008, 184 (02) :462-468
[10]   Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials [J].
Dominko, R ;
Bele, M ;
Gaberscek, M ;
Meden, A ;
Remskar, M ;
Jamnik, J .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (02) :217-222