Realization of a multinode quantum network of remote solid-state qubits

被引:449
作者
Pompili, M. [1 ,2 ]
Hermans, S. L. N. [1 ,2 ]
Baier, S. [1 ,2 ,3 ]
Beukers, H. K. C. [1 ,2 ]
Humphreys, P. C. [1 ,2 ,4 ]
Schouten, R. N. [1 ,2 ]
Vermeulen, R. F. L. [1 ,2 ]
Tiggelman, M. J. [1 ,2 ,5 ]
Martins, L. dos Santos [1 ,2 ]
Dirkse, B. [1 ,2 ]
Wehner, S. [1 ,2 ]
Hanson, R. [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, NL-2628 CJ Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
[3] Univ Innsbruck, Inst Expt Phys, Technikerstr 25, A-6020 Innsbruck, Austria
[4] DeepMind, London, England
[5] QBlox, NL-2628 CJ Delft, Netherlands
基金
欧洲研究理事会; 欧盟地平线“2020”; 美国国家科学基金会;
关键词
HERALDED ENTANGLEMENT; ATOMS;
D O I
10.1126/science.abg1919
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The distribution of entangled states across the nodes of a future quantum internet will unlock fundamentally new technologies. Here, we report on the realization of a three-node entanglement-based quantum network. We combine remote quantum nodes based on diamond communication qubits into a scalable phase-stabilized architecture, supplemented with a robust memory qubit and local quantum logic. In addition, we achieve real-time communication and feed-forward gate operations across the network. We demonstrate two quantum network protocols without postselection: the distribution of genuine multipartite entangled states across the three nodes and entanglement swapping through an intermediary node. Our work establishes a key platform for exploring, testing, and developing multinode quantum network protocols and a quantum network control stack.
引用
收藏
页码:259 / +
页数:38
相关论文
共 47 条
[1]   Multiparty quantum coin flipping [J].
Ambainis, A ;
Buhrman, H ;
Dodis, Y ;
Röhrig, H .
19TH IEEE ANNUAL CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2004, :250-259
[2]   Orbital and Spin Dynamics of Single Neutrally-Charged Nitrogen-Vacancy Centers in Diamond [J].
Baier, S. ;
Bradley, C. E. ;
Middelburg, T. ;
Dobrovitski, V. V. ;
Taminiau, T. H. ;
Hanson, R. .
PHYSICAL REVIEW LETTERS, 2020, 125 (19)
[3]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90
[4]   Proposal for teleportation of an atomic state via cavity decay [J].
Bose, S ;
Knight, PL ;
Plenio, MB ;
Vedral, V .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5158-5161
[5]   Observation of three-photon Greenberger-Horne-Zeilinger entanglement [J].
Bouwmeester, D ;
Pan, JW ;
Daniell, M ;
Weinfurter, H ;
Zeilinger, A .
PHYSICAL REVIEW LETTERS, 1999, 82 (07) :1345-1349
[6]   A Ten-Qubit Solid-State Spin Register with Quantum Memory up to One Minute [J].
Bradley, C. E. ;
Randall, J. ;
Abobeih, M. H. ;
Berrevoets, R. C. ;
Degen, M. J. ;
Bakker, M. A. ;
Markham, M. ;
Twitchen, D. J. ;
Taminiau, T. H. .
PHYSICAL REVIEW X, 2019, 9 (03)
[7]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[8]   Universal Blind Quantum Computation [J].
Broadbent, Anne ;
Fitzsimons, Joseph ;
Kashefi, Elham .
2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, :517-526
[9]   Creation of entangled states of distant atoms by interference [J].
Cabrillo, C ;
Cirac, JI ;
García-Fernández, P ;
Zoller, P .
PHYSICAL REVIEW A, 1999, 59 (02) :1025-1033
[10]  
Christandl M, 2005, LECT NOTES COMPUT SC, V3788, P217