All-Cellulose Composites by Partial Dissolution of Cotton Fibres

被引:19
作者
Arevalo, Raquel [1 ,2 ]
Picot, Olivier T. [1 ,2 ]
Wilson, Rory M. [1 ,2 ]
Soykeabkaew, Nattakan [1 ,2 ,3 ]
Peijs, Ton [1 ,2 ,4 ]
机构
[1] Queen Mary Univ London, Sch Mat Sci & Engn, London E1 4NS, England
[2] Queen Mary Univ London, Ctr Mat Res, London E1 4NS, England
[3] Mae Fah Luang Univ, Sch Sci, Chiang Rai 57100, Thailand
[4] Eindhoven Univ Technol, Eindhoven Polymer Labs, NL-5600 MB Eindhoven, Netherlands
关键词
Self-Reinforced Polymer; All-Cellulose; DMAc; Surface Dissolution; Cotton; MOLECULAR-WEIGHT CHARACTERIZATION; LITHIUM-CHLORIDE; FLAX FIBERS; SOLVENT EXCHANGE; PARTIAL OXYPROPYLATION; MECHANICAL-PROPERTIES; VOLUME FRACTION; POLYPROPYLENE; NANOCOMPOSITES; BEHAVIOR;
D O I
10.1166/jbmb.2010.1077
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In this work isotropic 'self-reinforced cellulose' or 'all-cellulose' composites have been successfully prepared from cotton pads by means of a fibre surface dissolution method in lithium chloride dissolved in N, N-dimethylacetamide (LiCl/DMAc). Solvent exchange was used as activation pretreatment, involving subsequent immersion of the fibres in water, acetone and DMAc. Three different parameters have been studied: (i) dissolution time, (ii) activation time and (iii) cotton source. The morphological, thermal and mechanical properties of the obtained all-cellulose composites were characterized. It was found that a dissolution time of 18 h lead to biobased materials with the best overall mechanical performance, as this time allowed for the dissolution of a sufficient amount of fibre surface to obtain good interfacial bonding between fibres, while keeping a considerable amount of remaining fibre cores that provide a strong reinforcement to the composite.
引用
收藏
页码:129 / 138
页数:10
相关论文
共 50 条
[21]   A comparative study of nanofibrillated cellulose and microcrystalline cellulose as reinforcements in all-cellulose composites [J].
Tanpichai, Supachok .
JOURNAL OF METALS MATERIALS AND MINERALS, 2018, 28 (01) :10-15
[22]   High-Temperature Viscoelastic Relaxation in All-Cellulose Composites [J].
Duchemin, Benout J. C. ;
Staiger, Mark P. ;
Newman, Roger H. .
MACROMOLECULAR SYMPOSIA, 2014, 340 (01) :52-58
[23]   Properties and Hydrophobization of Nonwoven-Woven All-Cellulose Composites [J].
Uusi-Tarkkaa, Eija-Katriina ;
Eronen, Eemeli ;
Begum, Afshan ;
Janis, Janne ;
Kadi, Nawar ;
Khalili, Pooria ;
Skrifvars, Mikael ;
Herajarvi, Henrik ;
Haapala, Antti .
BIORESOURCES, 2024, 19 (03) :5058-5073
[24]   All-cellulose composites based on the self-reinforced effect [J].
Li, Jinyang ;
Nawaz, Haq ;
Wu, Jin ;
Zhang, Jinming ;
Wan, Jiqiang ;
Mi, Qinyong ;
Yu, Jian ;
Zhang, Jun .
COMPOSITES COMMUNICATIONS, 2018, 9 :42-53
[25]   Orientation control of cellulose nanofibrils in all-cellulose composites and mechanical properties of the films [J].
Fujisawa, Shuji ;
Togawa, Eiji ;
Hayashi, Noriko .
JOURNAL OF WOOD SCIENCE, 2016, 62 (02) :174-180
[26]   Magnetic alignment of cellulose nanowhiskers in an all-cellulose composite [J].
Li, Dongsheng ;
Liu, Zuyan ;
Al-Haik, Marwan ;
Tehrani, Mehran ;
Murray, Frank ;
Tannenbaum, Rina ;
Garmestani, Hamid .
POLYMER BULLETIN, 2010, 65 (06) :635-642
[27]   Hemp-based all-cellulose composites through ionic liquid promoted controllable dissolution and structural control [J].
Chen, Ke ;
Xu, Weixin ;
Ding, Yun ;
Xue, Ping ;
Sheng, Pinghou ;
Qiao, Hui ;
He, Jimin .
CARBOHYDRATE POLYMERS, 2020, 235
[28]   Mechanical anisotropy of paper-based all-cellulose composites [J].
Kroeling, Henri ;
Duchemin, Benoit ;
Dormanns, Jan ;
Schabel, Samuel ;
Staiger, Mark P. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2018, 113 :150-157
[29]   Unidirectional All-Cellulose Composites from Flax via Controlled Impregnation with Ionic Liquid [J].
Chen, Feng ;
Sawada, Daisuke ;
Hummel, Michael ;
Sixta, Herbert ;
Budtova, Tatiana .
POLYMERS, 2020, 12 (05)
[30]   Upcycling Microbial Cellulose Scraps into Nanowhiskers with Engineered Performance as Fillers in All-Cellulose Composites [J].
Melo, Pamela T. S. ;
Otoni, Caio G. ;
Barud, Hernane S. ;
Aouada, Fauze A. ;
de Moura, Marcia R. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (41) :46661-46666