Fredholm and Wronskian representations of solutions to the KPI equation and multi-rogue waves

被引:24
作者
Gaillard, Pierre [1 ]
机构
[1] Univ Bourgogne, Inst Math Bourgogne, 9 Ave Alain Savary,BP 47870, F-21078 Dijon, France
关键词
KADOMTSEV-PETVIASHVILI EQUATION; RATIONAL SOLUTIONS; SOLITONS;
D O I
10.1063/1.4953383
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct solutions to the Kadomtsev-Petviashvili equation (KPI) in terms of Fredholm determinants. We deduce solutions written as a quotient of Wronskians of order 2N. These solutions, called solutions of order N, depend on 2N - 1 parameters. When one of these parameters tends to zero, we obtain N order rational solutions expressed as a quotient of two polynomials of degree 2N( N + 1) in x, y, and t depending on 2N - 2 parameters. So we get with this method an infinite hierarchy of solutions to the KPI equation. Published by AIP Publishing.
引用
收藏
页数:12
相关论文
共 36 条
[1]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[2]   Solutions to the time dependent Schrodinger and the Kadomtsev-Petviashvili equations [J].
Ablowitz, MJ ;
Villarroel, J .
PHYSICAL REVIEW LETTERS, 1997, 78 (04) :570-573
[3]   EVOLUTION OF PACKETS OF WATER-WAVES [J].
ABLOWITZ, MJ ;
SEGUR, H .
JOURNAL OF FLUID MECHANICS, 1979, 92 (JUN) :691-715
[4]   On a family of solutions of the Kadomtsev-Petviashvili equation which also satisfy the Toda lattice hierarchy [J].
Biondini, G ;
Kodama, Y .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (42) :10519-10536
[5]   PERIODIC MULTIPHASE SOLUTIONS OF THE KADOMSEV-PETVIASHVILI EQUATION [J].
BOBENKO, AI ;
BORDAG, LA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (09) :1259-1274
[6]   PROPERTIES OF SOLUTIONS OF THE KADOMTSEV-PETVIASHVILI-I EQUATION [J].
BOITI, M ;
PEMPINELLI, F ;
POGREBKOV, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (09) :4683-4718
[7]   SPECTRAL TRANSFORM AND ORTHOGONALITY RELATIONS FOR THE KADOMTSEV-PETVIASHVILI-I EQUATION [J].
BOITI, M ;
LEON, JJP ;
PEMPINELLI, F .
PHYSICS LETTERS A, 1989, 141 (3-4) :96-100
[8]  
DRYUMA VS, 1974, JETP LETT+, V19, P387
[9]   Multi-rogue waves solutions: from the NLS to the KP-I equation [J].
Dubard, P. ;
Matveev, V. B. .
NONLINEARITY, 2013, 26 (12) :R93-R125
[10]   THETA FUNCTIONS AND NON-LINEAR EQUATIONS [J].
DUBROVIN, BA .
RUSSIAN MATHEMATICAL SURVEYS, 1981, 36 (02) :11-92