Stabilization of a viscoelastic wave equation with boundary damping and variable exponents: Theoretical and numerical study

被引:6
作者
Al-Mahdi, Adel M. [1 ,2 ]
Al-Gharabli, Mohammad M. [1 ,2 ]
Nour, Maher [3 ]
Zahri, Mostafa [4 ,5 ]
机构
[1] King Fahd Univ Petr & Minerals, Preparatory Year Program, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Construct & Bldg Mat, Dhahran 31261, Saudi Arabia
[3] King Fahd Univ Petr & Minerals, DCC Math, Dhahran 31261, Saudi Arabia
[4] Univ Sharjah, Coll Sci, Dept Math, Res Grp MASEP, Sharjah, U Arab Emirates
[5] Univ Sharjah, Coll Sci, Dept Math, Res Grp BioInformat FG, Sharjah, U Arab Emirates
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 08期
关键词
variable exponent; Lebesgue and Sobolev spaces; boundary feedback; viscoelasticity; relaxation functions; general decay; finite difference method; GLOBAL EXISTENCE; DECAY; SPACES;
D O I
10.3934/math.2022842
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider a viscoelastic wave equation with boundary damping and variable exponents source term. The damping terms and variable exponents are localized on a portion of the boundary. We first, prove the existence of global solutions and then we establish optimal and general decay estimates depending on the relaxation function and the nature of the variable exponent nonlinearity. Finally, we run two numerical tests to demonstrate our theoretical decay results. This study generalizes and enhances existing literature results, and the acquired results are thus of significant importance when compared to previous literature results with constant or variable exponents in the domain.
引用
收藏
页码:15370 / 15401
页数:32
相关论文
共 48 条
[1]   A note on the boundary stabilization of a compactly coupled system of wave equations [J].
Aassila, M .
APPLIED MATHEMATICS LETTERS, 1999, 12 (03) :19-24
[2]   General and Optimal Decay Result for a Viscoelastic Problem with Nonlinear Boundary Feedback [J].
Al-Gharabli, Mohammad M. ;
Al-Mahdi, Adel M. ;
Messaoudi, Salim A. .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2019, 25 (04) :551-572
[3]  
[Anonymous], 1998, Int J Stoch Anal, DOI [10.1155/S1048953398000021, DOI 10.1155/S1048953398000021]
[4]  
[Anonymous], 2000, RELATIVISTIC QUANTUM
[5]   WAVE EQUATION WITH p(x,t)-LAPLACIAN AND DAMPING TERM: EXISTENCE AND BLOW-UP [J].
Antontsev, Stanislav .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2011, 3 (04) :503-525
[6]  
Arnol'd V.I., 2013, MATH METHODS CLASSIC, V60
[7]   An operator-difference scheme for abstract Cauchy problems [J].
Ashyralyev, Allaberen ;
Koksal, Mehmet Emir ;
Agarwal, Ravi P. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (07) :1855-1872
[8]  
Ashyralyev A, 2008, TURK J MATH, V32, P409
[9]   Stability of a second order of accuracy difference scheme for hyperbolic equation in a Hilbert space [J].
Ashyralyev, Allaberen ;
Koksal, Mehmet Emir .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2007, 2007
[10]   On the Numerical Solution of Hyperbolic PDEs with Variable Space Operator [J].
Ashyralyev, Allaberen ;
Koksal, Mehmet Emir .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (05) :1086-1099