Enhanced tensile ductility through boundary structure engineering in ultrafine-grained aluminum

被引:29
作者
Sun, P. L. [1 ]
Cerreta, E. K. [1 ]
Bingert, J. F. [1 ]
Gray, G. T., III [1 ]
Hundley, M. F. [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2007年 / 464卷 / 1-2期
关键词
ultratine-grained aluminum; boundary; mechanical properties;
D O I
10.1016/j.msea.2007.02.007
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Commercial purity aluminum AA1050 billets with similar submicrometer grain sizes but distinctively different boundary structures were obtained by the use of different equal channel angular extrusion (ECAE) routes. Route "A'' is defined as no rotation between extrusion passes, while route "C" is rotated 180 degrees between extrusion passes. The microstructure processed by route "A" consists mainly of high-angle boundaries (HABS) while route "C" has primarily low-angle boundary (LAB) structures. Tensile tests conducted on these two microstructures at intermediate and dynamic strain rates at both 77 and 298 K were compared with the results of material tested at quasi-static strain rates. The boundary structure was found to play an important role in the mechanical properties at low temperature. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:343 / 350
页数:8
相关论文
共 50 条
[31]   What governs ductility of ultrafine-grained metals? A microstructure based approach to necking instability [J].
Yasnikov, I. S. ;
Estrin, Y. ;
Vinogradov, A. .
ACTA MATERIALIA, 2017, 141 :18-28
[32]   First-Principles Calculation of Grain Boundary Excess Volume and Free Volume in Nanocrystalline and Ultrafine-Grained Aluminum [J].
Uesugi, Tokuteru ;
Higashi, Kenji .
MATERIALS TRANSACTIONS, 2013, 54 (09) :1597-1604
[33]   XFEM Simulation of Tensile and Fracture Behavior of Ultrafine-Grained Al 6061 Alloy [J].
Gairola, Saurabh ;
Jayaganthan, Rengaswamy .
METALS, 2021, 11 (11)
[34]   Producing ultrafine-grained materials through severe plastic deformation [J].
Kawasaki, Megumi ;
Langdon, Terence G. .
EMERGING MATERIALS RESEARCH, 2014, 3 (06) :252-260
[35]   Microstructure, Texture Evolution and Mechanical Characteristics of Ultrafine-Grained Structure in Friction Stir Processed Aluminum Alloys [J].
K. Venkateswara Reddy ;
M. Vykuntarao ;
Kishore Kumar Kandi ;
Rama Bhadri Raju Chekuri ;
Raju Chekuri ;
Durga Venkatesh Janaki ;
M. V. N. V. Satyanarayana .
Journal of The Institution of Engineers (India): Series D, 2025, 106 (1) :591-597
[36]   Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure [J].
Sun, S. J. ;
Tian, Y. Z. ;
An, X. H. ;
Lin, H. R. ;
Wang, J. W. ;
Zhang, Z. F. .
MATERIALS TODAY NANO, 2018, 4 :46-53
[37]   CURRENT TRENDS TO OBTAIN METALS AND ALLOYS WITH ULTRAFINE-GRAINED STRUCTURE [J].
Naizabekov, A. B. ;
Kolesnikov, A. S. ;
Latypova, M. A. ;
Fedorova, T. D. ;
Mamitova, A. D. .
USPEKHI FIZIKI METALLOV-PROGRESS IN PHYSICS OF METALS, 2022, 23 (04) :629-657
[38]   Structure evolution in ultrafine-grained nickel induced by ultrasonic welding [J].
Shayakhmetova, E. R. ;
Murzinova, M. A. ;
Mukhametgalina, A. A. ;
Nazarov, A. A. .
LETTERS ON MATERIALS, 2024, 14 (01) :91-96
[39]   Enhanced in vitro biocompatibility of ultrafine-grained titanium with hierarchical porous surface [J].
Zheng, C. Y. ;
Nie, F. L. ;
Zheng, Y. F. ;
Cheng, Y. ;
Wei, S. C. ;
Valiev, R. Z. .
APPLIED SURFACE SCIENCE, 2011, 257 (13) :5634-5640
[40]   Biaxial Deformation Behavior and Enhanced Formability of Ultrafine-Grained Pure Copper [J].
Moreno-Valle, E. C. ;
Monclus, M. A. ;
Molina-Aldareguia, J. M. ;
Enikeev, N. ;
Sabirov, I. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2013, 44A (05) :2399-2408