Regulation of Snf1 protein kinase in response to environmental stress

被引:147
作者
Hong, Seung-Pyo
Carlson, Marian
机构
[1] Columbia Univ, Dept Genet & Dev, New York, NY 10032 USA
[2] Columbia Univ, Dept Microbiol, New York, NY 10032 USA
关键词
D O I
10.1074/jbc.M700146200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Saccharomyces cerevisiae Snf1 protein kinase, a member of the Snf1/AMPK (AMP-activated protein kinase) family, has important roles in metabolic control, particularly in response to nutrient stress. Here we have addressed the role of Snf1 in responses to other environmental stresses. Exposure of cells to sodium ion stress, alkaline pH, or oxidative stress caused an increase in Snf1 catalytic activity and phosphorylation of Thr-210 in the activation loop, whereas treatment with sorbitol or heat shock did not. Inhibition of respiratory metabolism by addition of antimycin A to cells also increased Snf1 activity. Analysis of mutants indicated that the kinases Sak1, Tos3, and Elm1, which activate Snf1 in response to glucose limitation, are also required under other stress conditions. Each kinase sufficed for activation in response to stress, but Sak1 had the major role. In sak1 Delta tos3 Delta elm1 Delta cells expressing mammalian Ca2+/calmodulin-dependent protein kinase kinase alpha, Snf1 was activated by both sodium ion and alkaline stress, suggesting that stress signals regulate Snf1 activity by a mechanism that is independent of the upstream kinase. Finally, we showed that Snf1 protein kinase is regulated differently during adaptation of cells to NaCl and alkaline pH with respect to both temporal regulation of activation and subcellular localization. Snf1 protein kinase becomes enriched in the nucleus in response to alkaline pH but not salt stress. Such differences could contribute to specificity of the stress responses.
引用
收藏
页码:16838 / 16845
页数:8
相关论文
共 52 条
[1]   Intrasteric control of AMPK via the γ1 subunit AMP allosteric regulatory site [J].
Adams, J ;
Chen, ZP ;
Van Denderen, BJW ;
Morton, CJ ;
Parker, MW ;
Witters, LA ;
Stapleton, D ;
Kemp, BE .
PROTEIN SCIENCE, 2004, 13 (01) :155-165
[2]   Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene [J].
Alepuz, PM ;
Cunningham, KW ;
Estruch, F .
MOLECULAR MICROBIOLOGY, 1997, 26 (01) :91-98
[3]  
Ashrafi K, 2000, GENE DEV, V14, P1872
[4]   Rck2 kinase is a substrate for the osmotic stress-activated mitogen-activated protein kinase Hog1 [J].
Bilsland-Marchesan, E ;
Ariño, J ;
Saito, H ;
Sunnerhagen, P ;
Posas, F .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (11) :3887-3895
[5]   AN OSMOSENSING SIGNAL TRANSDUCTION PATHWAY IN YEAST [J].
BREWSTER, JL ;
DEVALOIR, T ;
DWYER, ND ;
WINTER, E ;
GUSTIN, MC .
SCIENCE, 1993, 259 (5102) :1760-1763
[6]   Remodeling of yeast genome expression in response to environmental changes [J].
Causton, HC ;
Ren, B ;
Koh, SS ;
Harbison, CT ;
Kanin, E ;
Jennings, EG ;
Lee, TI ;
True, HL ;
Lander, ES ;
Young, RA .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (02) :323-337
[7]   A YEAST GENE THAT IS ESSENTIAL FOR RELEASE FROM GLUCOSE REPRESSION ENCODES A PROTEIN-KINASE [J].
CELENZA, JL ;
CARLSON, M .
SCIENCE, 1986, 233 (4769) :1175-1180
[8]   5-AMINOIMIDAZOLE-4-CARBOXAMIDE RIBONUCLEOSIDE - A SPECIFIC METHOD FOR ACTIVATING AMP-ACTIVATED PROTEIN-KINASE IN INTACT-CELLS [J].
CORTON, JM ;
GILLESPIE, JG ;
HAWLEY, SA ;
HARDIE, DG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1995, 229 (02) :558-565
[9]   ROLE OF THE AMP-ACTIVATED PROTEIN-KINASE IN THE CELLULAR STRESS-RESPONSE [J].
CORTON, JM ;
GILLESPIE, JG ;
HARDIE, DG .
CURRENT BIOLOGY, 1994, 4 (04) :315-324
[10]   Glucose depletion causes haploid invasive growth in yeast [J].
Cullen, PJ ;
Sprague, GF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (25) :13619-13624