Convolutional neural network-based multimodal image fusion via similarity learning in the shearlet domain

被引:78
|
作者
Hermessi, Haithem [1 ]
Mourali, Olfa [1 ]
Zagrouba, Ezzeddine [1 ]
机构
[1] Univ Tunis El Manar, Intelligent Syst Imaging & Artificial Vis SIIVA, LIMTIC Lab, Higher Inst Comp Sci, Ariana, Tunisia
来源
NEURAL COMPUTING & APPLICATIONS | 2018年 / 30卷 / 07期
关键词
Convolutional neural networks; Shearlet transform; Multimodal medical image fusion; Transfer learning; Similarity metric learning; TRANSFORM;
D O I
10.1007/s00521-018-3441-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, deep learning has been shown effectiveness in multimodal image fusion. In this paper, we propose a fusion method for CT and MR medical images based on convolutional neural network (CNN) in the shearlet domain. We initialize the Siamese fully convolutional neural network with a pre-trained architecture learned from natural data; then, we train it with medical images in a transfer learning fashion. Training dataset is made of positive and negative patch pair of shearlet coefficients. Examples are fed in two-stream deep CNN to extract features maps; then, a similarity metric learning based on cross-correlation is performed aiming to learn mapping between features. The minimization of the logistic loss objective function is applied with stochastic gradient descent. Consequently, the fusion process flow starts by decomposing source CT and MR images by the non-subsampled shearlet transform into several subimages. High-frequency subbands are fused based on weighted normalized cross-correlation between feature maps given by the extraction part of the CNN, while low-frequency coefficients are combined using local energy. Training and test datasets include pairs of pre-registered CT and MRI taken from the Harvard Medical School database. Visual analysis and objective assessment proved that the proposed deep architecture provides state-of-the-art performance in terms of subjective and objective assessment. The potential of the proposed CNN for multi-focus image fusion is exhibited in the experiments.
引用
收藏
页码:2029 / 2045
页数:17
相关论文
共 50 条
  • [1] Convolutional neural network-based multimodal image fusion via similarity learning in the shearlet domain
    Haithem Hermessi
    Olfa Mourali
    Ezzeddine Zagrouba
    Neural Computing and Applications, 2018, 30 : 2029 - 2045
  • [2] Pulse Coupled Neural Network-Based Multimodal Medical Image Fusion via Guided Filtering and WSEML in NSCT Domain
    Li, Liangliang
    Ma, Hongbing
    ENTROPY, 2021, 23 (05)
  • [3] Convolutional neural network-based multimodal image information fusion for moisture damage assessment of cultural heritage buildings
    Wang, Fuzhi
    Huang, Jizhong
    Fu, Yu
    MEASUREMENT, 2025, 242
  • [4] Multimodal neurological image fusion based on adaptive biological inspired neural model in nonsubsampled Shearlet domain
    Singh, Sneha
    Anand, R. S.
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2019, 29 (01) : 50 - 64
  • [5] Multimodal medical image fusion using convolutional neural network and extreme learning machine
    Kong, Weiwei
    Li, Chi
    Lei, Yang
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [6] Multimodal medical image fusion based on nonsubsampled shearlet transform and convolutional sparse representation
    Lifang Wang
    Jieliang Dou
    Pinle Qin
    Suzhen Lin
    Yuan Gao
    Ruifang Wang
    Jin Zhang
    Multimedia Tools and Applications, 2021, 80 : 36401 - 36421
  • [7] Multimodal medical image fusion based on nonsubsampled shearlet transform and convolutional sparse representation
    Wang, Lifang
    Dou, Jieliang
    Qin, Pinle
    Lin, Suzhen
    Gao, Yuan
    Wang, Ruifang
    Zhang, Jin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (30) : 36401 - 36421
  • [8] Fully Convolutional Network-Based Multifocus Image Fusion
    Guo, Xiaopeng
    Nie, Rencan
    Cao, Jinde
    Zhou, Dongming
    Qian, Wenhua
    NEURAL COMPUTATION, 2018, 30 (07) : 1775 - 1800
  • [9] Medical Image Registration via Similarity Measure based on Convolutional Neural Network
    Dong, Li
    Lin, Yongzheng
    Pang, Yishen
    PROCEEDINGS OF 2020 5TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS (CLOUDTECH'20), 2020, : 1 - 5
  • [10] Research on Multimodal Medical Image Fusion Method Based on Fully Convolutional Neural Network
    Guo, Pengwei
    Yu, Shun
    ASIA-PACIFIC JOURNAL OF CLINICAL ONCOLOGY, 2023, 19 : 20 - 20