Comparison of quasistatic to impact mechanical properties of multiwall carbon nanotube/polycarbonate composites

被引:5
作者
Bruehwiler, Paul A. [1 ,2 ]
Barbezat, Michel [3 ]
Necola, Adly [3 ]
Kohls, Doug J. [4 ]
Bunk, Oliver [5 ]
Schaefer, Dale W. [4 ]
Poetschke, Petra [6 ]
机构
[1] Empa, Swiss Fed Labs Mat Testing & Res, CH-9014 St Gallen, Switzerland
[2] Uppsala Univ, Dept Phys & Mat Sci, SE-75121 Uppsala, Sweden
[3] Empa, CH-8600 Dubendorf, Switzerland
[4] Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA
[5] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland
[6] Leibniz Inst Polymer Res Dresden, Dept Polymer React & Blends, D-01069 Dresden, Germany
基金
美国国家科学基金会;
关键词
LAYERED-SILICATE NANOCOMPOSITES; SMALL-ANGLE SCATTERING; NANOTUBE COMPOSITES; MOLECULAR-WEIGHT; TAYLOR IMPACT; STRAIN-RATE; POLYCARBONATE; BEHAVIOR; DEFORMATION; POLYMER;
D O I
10.1557/JMR.2010.0139
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report the quasistatic tensile and impact penetration properties (falling dart test) of injection-molded polycarbonate samples, as a function of multiwall carbon nanotube (MWNT) concentration (0.0-2.5%). The MWNT were incorporated by dilution of a commercial MWNT/polycarbonate masterbatch. The stiffness and quasistatic yield strength of the composites increased approximately linearly with MWNT concentration in all measurements. The energy absorbed in fracture was, however, a negative function of the MWNT concentration, and exhibited different dependencies in quasistatic and impact tests. Small-angle x-ray scattering (SAXS) showed that the dispersion of the MWNT was similar at all concentrations. The negative effects on energy absorption are attributed to agglomerates remaining in the samples, which were observed in optical microscopy and SAXS. Overall, there was a good correspondence between static and dynamic energy absorption.
引用
收藏
页码:1118 / 1130
页数:13
相关论文
共 60 条
[21]   Single-walled carbon nanotubes/polycarbonate composites:: basic electrical and mechanical properties [J].
Hornbostel, Bjoern ;
Poetschke, Petra ;
Kotz, Jochen ;
Roth, Siegmar .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (13) :3445-3451
[22]   Projectile perforation of moving plates: Experimental investigation [J].
Hou, XF ;
Goldsmith, W .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 1996, 18 (7-8) :859-875
[23]   Mechanical response and rheological properties of polycarbonate layered-silicate nanocomposites [J].
Hsieh, AJ ;
Moy, P ;
Beyer, FL ;
Madison, P ;
Napadensky, E ;
Ren, JX ;
Krishnamoorti, R .
POLYMER ENGINEERING AND SCIENCE, 2004, 44 (05) :825-837
[24]   Simplified tube form factor for analysis of small-angle scattering data from carbon nanotube filled systems [J].
Justice, Ryan S. ;
Wang, David H. ;
Tan, Loon-Seng ;
Schaefer, Dale W. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2007, 40 :S88-S92
[25]   Acrylonitrile-butadiene-styrene nanocomposites filled with nanosized alumina [J].
Kar, Kamal K. ;
Srivastava, S. ;
Rahaman, Ariful ;
Nayak, S. K. .
POLYMER COMPOSITES, 2008, 29 (05) :489-499
[26]   Effects of morphology on the electrical and mechanical properties of the polycarbonate/multi-walled carbon nanotube composites [J].
Kum, Chong Ku ;
Sung, Yu-Taek ;
Han, Mi Sun ;
Kim, Woo Nyon ;
Lee, Heon Sang ;
Lee, Sun-Jeong ;
Joo, Jinsoo .
MACROMOLECULAR RESEARCH, 2006, 14 (04) :456-460
[27]   Thermomechanical properties of polycarbonate under dynamic loading [J].
Lerch, V ;
Gary, G ;
Hervé, P .
JOURNAL DE PHYSIQUE IV, 2003, 110 :159-164
[28]   MECHANISM OF BRITTLE-FRACTURE IN NOTCHED IMPACT TESTS ON POLYCARBONATE [J].
MILLS, NJ .
JOURNAL OF MATERIALS SCIENCE, 1976, 11 (02) :363-375
[29]   Polycarbonate and a polycarbonate-POSS nanocomposite at high rates of deformation [J].
Mulliken, A. D. ;
Boyce, M. C. .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2006, 128 (04) :543-550