A Deep Learning-Based Approach for High-Throughput Hypocotyl Phenotyping

被引:17
作者
Dobos, Orsolya [1 ,2 ]
Horvath, Peter [3 ]
Nagy, Ferenc [1 ]
Danka, Tivadar [3 ]
Viczian, Andras [1 ]
机构
[1] Hungarian Acad Sci, Inst Plant Biol, Res Ctr, H-6726 Szeged, Hungary
[2] Univ Szeged, Fac Sci & Informat, Doctoral Sch Biol, H-6726 Szeged, Hungary
[3] Hungarian Acad Sci, Inst Biochem, Biol Res Ctr, H-6726 Szeged, Hungary
基金
匈牙利科学研究基金会;
关键词
DEETIOLATED MUSTARD SEEDLINGS; B-INDUCED PHOTOMORPHOGENESIS; ARABIDOPSIS MUTANTS; IMAGE-ANALYSIS; GROWTH; LIGHT; PHYTOCHROME; ELONGATION; PHOTORECEPTOR; EXPRESSION;
D O I
10.1104/pp.19.00728
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Hypocotyl length determination is a widely used method to phenotype young seedlings. The measurement itself has advanced from using rulers and millimeter papers to assessing digitized images but remains a labor-intensive, monotonous, and time-consuming procedure. To make high-throughput plant phenotyping possible, we developed a deep-learning-based approach to simplify and accelerate this method. Our pipeline does not require a specialized imaging system but works well with low-quality images produced with a simple flatbed scanner or a smartphone camera. Moreover, it is easily adaptable for a diverse range of datasets not restricted to Arabidopsis (Arabidopsis thaliana). Furthermore, we show that the accuracy of the method reaches human performance. We not only provide the full code at , but also give detailed instructions on how the algorithm can be trained with custom data, tailoring it for the requirements and imaging setup of the user. A deep learning-based algorithm provides an adaptable tool for determining hypocotyl or coleoptile length of different plant species.
引用
收藏
页码:1415 / 1424
页数:10
相关论文
共 50 条
  • [31] A short review of RGB sensor applications for accessible high-throughput phenotyping
    Kim J.Y.
    Chung Y.S.
    Journal of Crop Science and Biotechnology, 2021, 24 (5) : 495 - 499
  • [32] High-throughput Phenotyping of Maize Roots Using Digital Image Analysis
    Coronado-Aleans, Veronica
    Barrera-Sanchez, Carlos F.
    Guzman, Manuel
    REVISTA CORPOICA-CIENCIA Y TECNOLOGIA AGROPECUARIA, 2024, 25 (01):
  • [33] Investigating the potential of satellite imagery for high-throughput field phenotyping applications
    Sankaran, Sindhuja
    Zhang, Chongyuan
    Hurst, J. Preston
    Marzougui, Afef
    Veeranampalayam-Sivakumar, Arun Narenthiran
    Li, Jiating
    Schnable, James
    Shi, Yeyin
    AUTONOMOUS AIR AND GROUND SENSING SYSTEMS FOR AGRICULTURAL OPTIMIZATION AND PHENOTYPING V, 2020, 11414
  • [34] A microwell platform for high-throughput longitudinal phenotyping and selective retrieval of organoids
    Sockell, Alexandra
    Wong, Wing
    Longwell, Scott
    Vu, Thy
    Karlsson, Kasper
    Mokhtari, Daniel
    Schaepe, Julia
    Lo, Yuan-Hung
    Cornelius, Vincent
    Kuo, Calvin
    Van Valen, David
    Curtis, Christina
    Fordyce, Polly M.
    CELL SYSTEMS, 2023, 14 (09) : 764 - +
  • [35] High-throughput phenotyping to dissect genotypic differences in safflower for drought tolerance
    Joshi, Sameer
    Thoday-Kennedy, Emily
    Daetwyler, Hans D.
    Hayden, Matthew
    Spangenberg, German
    Kant, Surya
    PLOS ONE, 2021, 16 (07):
  • [36] Applying high-throughput phenotyping to plant-insect interactions: picturing more resistant crops
    Goggin, Fiona L.
    Lorence, Argelia
    Topp, Christopher N.
    CURRENT OPINION IN INSECT SCIENCE, 2015, 9 : 69 - 76
  • [37] High-throughput phenotyping: Breaking through the bottleneck in future crop breeding
    Song, Peng
    Wang, Jinglu
    Guo, Xinyu
    Yang, Wanneng
    Zhao, Chunjiang
    CROP JOURNAL, 2021, 9 (03): : 633 - 645
  • [38] 3D Reconstruction of Plant Leaves for High-Throughput Phenotyping
    Zhu, Feiyu
    Thapa, Suresh
    Gao, Tiao
    Ge, Yufeng
    Walia, Harkamal
    Yu, Hongfeng
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 4285 - 4293
  • [39] High-throughput phenotyping of physiological traits for wheat resilience to high temperature and drought stress
    Correia, Pedro M. P.
    Westergaard, Jesper Cairo
    da Silva, Anabela Bernardes
    Roitsch, Thomas
    Carmo-Silva, Elizabete
    da Silva, Jorge Marques
    JOURNAL OF EXPERIMENTAL BOTANY, 2022, 73 (15) : 5235 - 5251
  • [40] ATSS Deep Learning-Based Approach to Detect Apple Fruits
    Biffi, Leonardo Josoe
    Mitishita, Edson
    Liesenberg, Veraldo
    dos Santos, Anderson Aparecido
    Goncalves, Diogo Nunes
    Estrabis, Nayara Vasconcelos
    Silva, Jonathan de Andrade
    Osco, Lucas Prado
    Ramos, Ana Paula Marques
    Centeno, Jorge Antonio Silva
    Schimalski, Marcos Benedito
    Rufato, Leo
    Neto, Silvio Luis Rafaeli
    Marcato Junior, Jose
    Goncalves, Wesley Nunes
    REMOTE SENSING, 2021, 13 (01) : 1 - 23