A Deep Learning-Based Approach for High-Throughput Hypocotyl Phenotyping

被引:17
作者
Dobos, Orsolya [1 ,2 ]
Horvath, Peter [3 ]
Nagy, Ferenc [1 ]
Danka, Tivadar [3 ]
Viczian, Andras [1 ]
机构
[1] Hungarian Acad Sci, Inst Plant Biol, Res Ctr, H-6726 Szeged, Hungary
[2] Univ Szeged, Fac Sci & Informat, Doctoral Sch Biol, H-6726 Szeged, Hungary
[3] Hungarian Acad Sci, Inst Biochem, Biol Res Ctr, H-6726 Szeged, Hungary
基金
匈牙利科学研究基金会;
关键词
DEETIOLATED MUSTARD SEEDLINGS; B-INDUCED PHOTOMORPHOGENESIS; ARABIDOPSIS MUTANTS; IMAGE-ANALYSIS; GROWTH; LIGHT; PHYTOCHROME; ELONGATION; PHOTORECEPTOR; EXPRESSION;
D O I
10.1104/pp.19.00728
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Hypocotyl length determination is a widely used method to phenotype young seedlings. The measurement itself has advanced from using rulers and millimeter papers to assessing digitized images but remains a labor-intensive, monotonous, and time-consuming procedure. To make high-throughput plant phenotyping possible, we developed a deep-learning-based approach to simplify and accelerate this method. Our pipeline does not require a specialized imaging system but works well with low-quality images produced with a simple flatbed scanner or a smartphone camera. Moreover, it is easily adaptable for a diverse range of datasets not restricted to Arabidopsis (Arabidopsis thaliana). Furthermore, we show that the accuracy of the method reaches human performance. We not only provide the full code at , but also give detailed instructions on how the algorithm can be trained with custom data, tailoring it for the requirements and imaging setup of the user. A deep learning-based algorithm provides an adaptable tool for determining hypocotyl or coleoptile length of different plant species.
引用
收藏
页码:1415 / 1424
页数:10
相关论文
共 50 条
  • [21] High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae
    Liu, Xue
    Gallay, Clement
    Kjos, Morten
    Domenech, Arnau
    Slager, Jelle
    van Kessel, Sebastiaan P.
    Knoops, Kevin
    Sorg, Robin A.
    Zhang, Jing-Ren
    Veening, Jan-Willem
    MOLECULAR SYSTEMS BIOLOGY, 2017, 13 (05)
  • [22] Deep Learning Image Analysis of High-Throughput Toxicology Assay Images
    Tandon, Arpit
    Howard, Brian
    Ramaiahgari, Sreenivasa
    Maharana, Adyasha
    Ferguson, Stephen
    Shah, Ruchir
    Merrick, B. Alex
    SLAS DISCOVERY, 2022, 27 (01) : 29 - 38
  • [23] High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
    Cheng, Tao
    Wang, Zhaoming
    Zhao, Chunjiang
    Zhang, Dongyan
    Zhang, Gan
    Wang, Tianyi
    Ren, Weibo
    Yuan, Feng
    Liu, Yaling
    ARTIFICIAL INTELLIGENCE IN AGRICULTURE, 2025, 15 (01): : 98 - 115
  • [24] A tool named Iris for versatile high-throughput phenotyping in microorganisms
    Kritikos, George
    Banzhaf, Manuel
    Herrera-Dominguez, Lucia
    Koumoutsi, Alexandra
    Wartel, Morgane
    Zietek, Matylda
    Typas, Athanasios
    NATURE MICROBIOLOGY, 2017, 2 (05):
  • [25] Accelerated high-throughput imaging and phenotyping system for small organisms
    Kose, Talha
    Lins, Tiago F.
    Wang, Jessie
    O'Brien, Anna M.
    Sinton, David
    Frederickson, Megan E.
    PLOS ONE, 2023, 18 (07):
  • [26] High-throughput phenotyping for terminal drought stress in chickpea (Cicer arietinum L.)
    Pappula-Reddy, Sneha-Priya
    Kumar, Sudhir
    Pang, Jiayin
    Chellapilla, Bharadwaj
    Pal, Madan
    Millar, A. Harvey
    Siddique, Kadambot H. M.
    PLANT STRESS, 2024, 11
  • [27] Methods of high-throughput plant phenotyping for large-scale breeding and genetic experiments
    Afonnikov, D. A.
    Genaev, M. A.
    Doroshkov, A. V.
    Komyshev, E. G.
    Pshenichnikova, T. A.
    RUSSIAN JOURNAL OF GENETICS, 2016, 52 (07) : 688 - 701
  • [28] RhizoPot platform: A high-throughput in situ root phenotyping platform with integrated hardware and software
    Zhao, Hongjuan
    Wang, Nan
    Sun, Hongchun
    Zhu, Lingxiao
    Zhang, Ke
    Zhang, Yongjiang
    Zhu, Jijie
    Li, Anchang
    Bai, Zhiying
    Liu, Xiaoqing
    Dong, Hezhong
    Liu, Liantao
    Li, Cundong
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [29] Engineering plants for tomorrow: how high-throughput phenotyping is contributing to the development of better crops
    Campbell, Zachary C.
    Acosta-Gamboa, Lucia M.
    Nepal, Nirman
    Lorence, Argelia
    PHYTOCHEMISTRY REVIEWS, 2018, 17 (06) : 1329 - 1343
  • [30] Biomarker-based high-throughput sperm phenotyping: Andrology in the age of precision medicine and agriculture
    Tirpak, Filip
    Hamilton, Lauren E.
    Schnabel, Robert D.
    Sutovsky, Peter
    ANIMAL REPRODUCTION SCIENCE, 2024, 271