A quinone-based oligomeric lithium salt for superior Li-organic batteries

被引:268
作者
Song, Zhiping [1 ]
Qian, Yumin [1 ]
Liu, Xizheng [1 ]
Zhang, Tao [1 ]
Zhu, Yanbei [3 ]
Yu, Haijun [1 ]
Otani, Minoru [2 ,4 ]
Zhou, Haoshen [1 ,5 ,6 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, Tsukuba, Ibaraki 3058568, Japan
[2] Natl Inst Adv Ind Sci & Technol, Nanosyst Res Inst, Tsukuba, Ibaraki 3058568, Japan
[3] Natl Inst Adv Ind Sci & Technol, Natl Metrol Inst Japan, Tsukuba, Ibaraki 3058568, Japan
[4] Kyoto Univ, Kyoto 6158520, Japan
[5] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[6] Nanjing Univ, Dept Energy Sci & Engn, Nanjing 210093, Jiangsu, Peoples R China
关键词
ION BATTERIES; ENERGY-STORAGE; ELECTRODE MATERIALS; ACTIVE MATERIALS; HIGH-CAPACITY; CATHODE; POLYMER; CHARGE; COMPOUND; DENSITY;
D O I
10.1039/c4ee02575j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic electrode materials are promising alternatives to transition-metal based intercalation compounds for the next generation of high-performance and sustainable batteries. Herein, a novel quinone-based organic, lithium salt of poly(2,5-dihydroxy-p-benzoquinonyl sulfide) (Li(2)PDHBQS), was successfully synthesized through a simple one-step polycondensation reaction, and applied as a cathode for Li-organic batteries. As an oligomeric lithium salt with average polymerization degree of 7, Li2PDHBQS combines the advantages of the O center dot center dot center dot Li center dot center dot center dot O coordination bond and increased molecular weight, thus solves absolutely the dissolution problem of active material in non-aqueous electrolytes, which has seriously hindered development of organic electrode materials. Benefiting from the high theoretical capacity, intrinsic insolubility, fast reaction kinetics of the quinone group, accelerated Li-ion transport and uniform blending with conductive carbon, as well as the stable amorphous structure, Li(2)PDHBQS shows superior comprehensive electrochemical performance including high reversible capacity (268 mA h g(-1)), high cycling stability (1500 cycles, 90%), high rate capability (5000 mA g(-1), 83%) and high Coulombic efficiency (99.9-100.1%). Investigation of the structure-property relationship of Li(2)PDHBQS and its analogues also gives new insights into developing novel quinone-based organic electrode materials, for building better Li-organic or Na-organic batteries beyond traditional Li-ion batteries.
引用
收藏
页码:4077 / 4086
页数:10
相关论文
共 40 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   High-Potential Reversible Li Deintercalation in a Substituted Tetrahydroxy-p-benzoquinone Dilithium Salt: An Experimental and Theoretical Study [J].
Barres, Anne-Lise ;
Geng, Joaquin ;
Bonnard, Gaetan ;
Renault, Steven ;
Gottis, Sebastien ;
Mentre, Olivier ;
Frayret, Christine ;
Dolhem, Franck ;
Poizot, Philippe .
CHEMISTRY-A EUROPEAN JOURNAL, 2012, 18 (28) :8800-8812
[3]   From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries [J].
Chen, Haiyan ;
Armand, Michel ;
Demailly, Gilles ;
Dolhem, Franck ;
Poizot, Philippe ;
Tarascon, Jean-Marie .
CHEMSUSCHEM, 2008, 1 (04) :348-355
[4]   Electrochemical Reactivity of Lithium Chloranilate vs Li and Crystal Structures of the Hydrated Phases [J].
Chen, Haiyan ;
Poizot, Philippe ;
Dolhem, Franck ;
Basir, Nor Irwin ;
Mentre, Olivier ;
Tarascon, Jean-Marie .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2009, 12 (05) :A102-A106
[5]   Lithium Salt of Tetrahydroxybenzoquinone: Toward the Development of a Sustainable Li-Ion Battery [J].
Chen, Haiyan ;
Armand, Michel ;
Courty, Matthieu ;
Jiang, Meng ;
Grey, Clare P. ;
Dolhem, Franck ;
Tarascon, Jean-Marie ;
Poizot, Philippe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (25) :8984-8988
[6]   Aqueous Electrochemistry of Poly(vinylanthraquinone) for Anode-Active Materials in High-Density and Rechargeable Polymer/Air Batteries [J].
Choi, Wonsung ;
Harada, Daisuke ;
Oyaizu, Kenichi ;
Nishide, Hiroyuki .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (49) :19839-19843
[7]   β-Ketoenamine-Linked Covalent Organic Frameworks Capable of Pseudocapacitive Energy Storage [J].
DeBlase, Catherine R. ;
Silberstein, Katharine E. ;
Thanh-Tam Truong ;
Abruna, Hector D. ;
Dichtel, William R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (45) :16821-16824
[8]   Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials [J].
Han, Xiaoyan ;
Chang, Caixian ;
Yuan, Liangjie ;
Sun, Taolei ;
Sun, Jutang .
ADVANCED MATERIALS, 2007, 19 (12) :1616-+
[9]   Application of quinonic cathode compounds for quasi-solid lithium batteries [J].
Hanyu, Yuki ;
Ganbe, Yoshiyuki ;
Honma, Itaru .
JOURNAL OF POWER SOURCES, 2013, 221 :186-190
[10]   Rechargeable quasi-solid state lithium battery with organic crystalline cathode [J].
Hanyu, Yuki ;
Honma, Itaru .
SCIENTIFIC REPORTS, 2012, 2