Using Raman spectroscopy to characterize biological materials

被引:877
|
作者
Butler, Holly J. [1 ,2 ]
Ashton, Lorna [3 ]
Bird, Benjamin [4 ]
Cinque, Gianfelice [5 ]
Curtis, Kelly [6 ]
Dorney, Jennifer [6 ]
Esmonde-White, Karen [7 ]
Fullwood, Nigel J. [8 ]
Gardner, Benjamin [6 ]
Martin-Hirsch, Pierre L. [1 ,9 ]
Walsh, Michael J. [10 ,11 ]
McAinsh, Martin R. [1 ]
Stone, Nicholas [6 ,12 ]
Martin, Francis L. [1 ]
机构
[1] Univ Lancaster, Lancaster Environm Ctr, Lancaster, England
[2] Univ Lancaster, Lancaster Environm Ctr, Ctr Global Ecoinnovat, Lancaster, England
[3] Univ Lancaster, Dept Chem, Lancaster LA1 4YA, England
[4] Daylight Solut, San Diego, CA USA
[5] Diamond Light Source, Harwell Sci & Innovat Campus, Chilton, Oxon, England
[6] Univ Exeter, Dept Biomed Phys Phys & Astron, Exeter, Devon, England
[7] Univ Michigan, Sch Med, Dept Internal Med, Ann Arbor, MI USA
[8] Univ Lancaster, Dept Biomed & Life Sci, Sch Hlth & Med, Lancaster, England
[9] Univ Cent Lancashire, Sch Pharm & Biomed Sci, Preston PR1 2HE, Lancs, England
[10] Univ Illinois, Dept Pathol, Chicago, IL USA
[11] Univ Illinois, Dept Bioengn, Chicago, IL USA
[12] Gloucestershire Hosp NHS Fdn Trust, Biophoton Res Unit, Gloucester, England
基金
英国工程与自然科学研究理事会; 美国国家卫生研究院; 英国生物技术与生命科学研究理事会;
关键词
PLANT-CELL-WALLS; HUMAN TEAR FLUID; TISSUE IN-VIVO; SCATTERING MICROSCOPY; LABEL-FREE; VIBRATIONAL SPECTROSCOPY; LIVE CELLS; HUMAN SKIN; BIOMEDICAL APPLICATIONS; OPTICAL-ACTIVITY;
D O I
10.1038/nprot.2016.036
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Raman spectroscopy can be used to measure the chemical composition of a sample, which can in turn be used to extract biological information. Many materials have characteristic Raman spectra, which means that Raman spectroscopy has proven to be an effective analytical approach in geology, semiconductor, materials and polymer science fields. The application of Raman spectroscopy and microscopy within biology is rapidly increasing because it can provide chemical and compositional information, but it does not typically suffer from interference from water molecules. Analysis does not conventionally require extensive sample preparation; biochemical and structural information can usually be obtained without labeling. In this protocol, we aim to standardize and bring together multiple experimental approaches from key leaders in the field for obtaining Raman spectra using a microspectrometer. As examples of the range of biological samples that can be analyzed, we provide instructions for acquiring Raman spectra, maps and images for fresh plant tissue, formalin-fixed and fresh frozen mammalian tissue, fixed cells and biofluids. We explore a robust approach for sample preparation, instrumentation, acquisition parameters and data processing. By using this approach, we expect that a typical Raman experiment can be performed by a nonspecialist user to generate high-quality data for biological materials analysis.
引用
收藏
页码:664 / 687
页数:24
相关论文
共 50 条
  • [31] SPECTROSCOPY OF RAMAN EFFECT OF BIOLOGICAL MOLECULES
    KENIG, LL
    USPEKHI KHIMII, 1975, 44 (06) : 1109 - 1166
  • [32] Use of Raman spectroscopy in biological compounds
    Tu, AT
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2003, 50 (01) : 1 - 10
  • [33] Using polarized infrared spectroscopy to characterize surface adsorbed and internal water in planetary materials
    Sun, Lingzhi
    Lucey, Paul G.
    Fisher, Elizabeth A.
    ICARUS, 2024, 411
  • [34] Using Fourier transform IR spectroscopy to analyze biological materials
    Matthew J Baker
    Júlio Trevisan
    Paul Bassan
    Rohit Bhargava
    Holly J Butler
    Konrad M Dorling
    Peter R Fielden
    Simon W Fogarty
    Nigel J Fullwood
    Kelly A Heys
    Caryn Hughes
    Peter Lasch
    Pierre L Martin-Hirsch
    Blessing Obinaju
    Ganesh D Sockalingum
    Josep Sulé-Suso
    Rebecca J Strong
    Michael J Walsh
    Bayden R Wood
    Peter Gardner
    Francis L Martin
    Nature Protocols, 2014, 9 : 1771 - 1791
  • [35] Using Fourier transform IR spectroscopy to analyze biological materials
    Baker, Matthew J.
    Trevisan, Julio
    Bassan, Paul
    Bhargava, Rohit
    Butler, Holly J.
    Dorling, Konrad M.
    Fielden, Peter R.
    Fogarty, Simon W.
    Fullwood, Nigel J.
    Heys, Kelly A.
    Hughes, Caryn
    Lasch, Peter
    Martin-Hirsch, Pierre L.
    Obinaju, Blessing
    Sockalingum, Ganesh D.
    Sule-Suso, Josep
    Strong, Rebecca J.
    Walsh, Michael J.
    Wood, Bayden R.
    Gardner, Peter
    Martin, Francis L.
    NATURE PROTOCOLS, 2014, 9 (08) : 1771 - 1791
  • [36] Study of MgZnO semiconductor materials using photoluminescence and resonance Raman spectroscopy
    Wu, T.-Z. (wutzh@mail.sysu.edu.cn), 1600, Editorial Office of Chinese Optics (34):
  • [37] INVESTIGATIONS OF MATERIALS AT HIGH-TEMPERATURES USING RAMAN-SPECTROSCOPY
    MCCARTY, KF
    HIGH TEMPERATURE SCIENCE, 1989, 26 : 19 - 30
  • [38] Standoff detection of explosive materials using UV-Raman spectroscopy
    Wang, Bo
    Zhang, Pu
    Zhang, Shuyao
    Zhu, Xiangping
    Zhao, Wei
    AOPC 2021: OPTICAL SPECTROSCOPY AND IMAGING, 2021, 12064
  • [39] In situ diagnostics of catalytic materials using tunable confocal Raman spectroscopy
    Nitsche, David
    Hess, Christian
    JOURNAL OF RAMAN SPECTROSCOPY, 2013, 44 (12) : 1733 - 1738
  • [40] Efficient Raman spectroscopy for materials science
    Remi, Sebastian
    LASER FOCUS WORLD, 2021, 57 (06): : 35 - 38