Continuous controlled cone metric-type spaces over real Banach algebras and fixed-point results

被引:0
作者
Ullah, Wahid [1 ]
Isik, Huseyin [2 ]
Alam, Nouman [3 ]
Park, Choonkil [4 ]
Lee, Jung Rye [5 ]
机构
[1] Quaid I Azam Univ, Dept Math, Islamabad, Pakistan
[2] Bandirma Onyedi Eylul Univ, Dept Engn Sci, Balikesir, Turkey
[3] Univ Engn & Technol Peshawar, Peshawar, Pakistan
[4] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea
[5] Daejin Univ, Dept Data Sci, Kyunggi 11159, South Korea
关键词
Controlled metric-type space; Cone metric space over Banach algebra; Fixed point; Reich-type contraction; ALPHA-ADMISSIBLE MAPPINGS; THEOREMS;
D O I
10.1186/s13660-022-02789-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we introduce a new geometrical structure that is the hybrid of a cone metric space over Banach algebra and a controlled metric-type space. We introduce a new metric space and prove analogs of Banach-, Kannan- and Reich-type fixed-point theorems. We also furnish various concrete examples to establish the validity of our results. The obtained results generalize many well-known results in the literature.
引用
收藏
页数:19
相关论文
共 29 条
[1]   Double Controlled Metric Type Spaces and Some Fixed Point Results [J].
Abdeljawad, Thabet ;
Mlaiki, Nabil ;
Aydi, Hassen ;
Souayah, Nizar .
MATHEMATICS, 2018, 6 (12)
[2]   Fixed point results via a Hausdorff controlled type metric [J].
Alamgir, Nayab ;
Kiran, Quanita ;
Isik, Huseyin ;
Aydi, Hassen .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[3]  
Czerwik S., 1993, Acta Math. Univ. Ostrav, V1, P5
[5]   A note on cone b-metric and its related results: generalizations or equivalence? [J].
Du, Wei-Shih ;
Karapinar, Erdal .
FIXED POINT THEORY AND APPLICATIONS, 2013,
[6]   On the end of the cone metric space [J].
Ercan, Z. .
TOPOLOGY AND ITS APPLICATIONS, 2014, 166 :10-14
[7]   On J-Cone Metric Spaces over a Banach Algebra and Some Fixed-Point Theorems [J].
Fernandez, Jerolina ;
Malviya, Neeraj ;
Parvaneh, Vahid ;
Aydi, Hassen ;
Mohammadi, Babak .
ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021
[8]  
Fernandez J, 2020, ADV DIFFER EQU-NY, V2020, DOI 10.1186/s13662-020-02991-5
[9]   Various extensions of Kannan's fixed point theorem [J].
Gornicki, Jaroslaw .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (01)
[10]  
Huang HP, 2016, J COMPUT ANAL APPL, V20, P566