Density estimation using deep generative neural networks

被引:59
作者
Liu, Qiao [1 ,2 ,3 ,4 ]
Xu, Jiaze [2 ,3 ,4 ,5 ,6 ]
Jiang, Rui [1 ]
Wong, Wing Hung [2 ,3 ,4 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Ctr Synthet & Syst Biol, Dept Automat,Minist Educ,Key Lab Bioinformat,Res, Beijing 100084, Peoples R China
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[4] Stanford Univ, Bio X Program, Stanford, CA 94305 USA
[5] Tsinghua Univ, Ctr Stat Sci, Beijing 100084, Peoples R China
[6] Tsinghua Univ, Dept Ind Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
density estimation; neural network; deep learning; importance sampling; GAN;
D O I
10.1073/pnas.2101344118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Density estimation is one of the fundamental problems in both statistics and machine learning. In this study, we propose Roundtrip, a computational framework for general-purpose density estimation based on deep generative neural networks. Roundtrip retains the generative power of deep generative models, such as generative adversarial networks (GANs) while it also provides estimates of density values, thus supporting both data generation and density estimation. Unlike previous neural density estimators that put stringent conditions on the transformation from the latent space to the data space, Roundtrip enables the use of much more general mappings where target density is modeled by learning a manifold induced from a base density (e.g., Gaussian distribution). Roundtrip provides a statistical framework for GAN models where an explicit evaluation of density values is feasible. In numerical experiments, Roundtrip exceeds state-of-the-art performance in a diverse range of density estimation tasks.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Spatial interpolation using conditional generative adversarial neural networks
    Zhu, Di
    Cheng, Ximeng
    Zhang, Fan
    Yao, Xin
    Gao, Yong
    Liu, Yu
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2020, 34 (04) : 735 - 758
  • [42] Image synthesis of apparel stitching defects using deep convolutional generative adversarial networks
    ul-Huda, Noor
    Ahmad, Haseeb
    Banjar, Ameen
    Alzahrani, Ahmed Omar
    Ahmad, Ibrar
    Naeem, M. Salman
    HELIYON, 2024, 10 (04)
  • [43] Unrestricted deep metric learning using neural networks interaction
    Mehralian, Soheil
    Teshnehlab, Mohammad
    Nasersharif, Babak
    PATTERN ANALYSIS AND APPLICATIONS, 2021, 24 (04) : 1699 - 1711
  • [44] Hierarchical Training of Deep Neural Networks Using Early Exiting
    Sepehri, Yamin
    Pad, Pedram
    Yuzuguler, Ahmet Caner
    Frossard, Pascal
    Dunbar, L. Andrea
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 15
  • [45] Deep Neural Networks for Survival Analysis Using Pseudo Values
    Zhao, Lili
    Feng, Dai
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (11) : 3308 - 3314
  • [46] Keystroke Analysis for User Identification using Deep Neural Networks
    Bernardi, Mario Luca
    Cimitile, Marta
    Martinelli, Fabio
    Mercaldo, Francesco
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [47] Analysis of Gastrointestinal Acoustic Activity Using Deep Neural Networks
    Ficek, Jakub
    Radzikowski, Kacper
    Nowak, Jan Krzysztof
    Yoshie, Osamu
    Walkowiak, Jaroslaw
    Nowak, Robert
    SENSORS, 2021, 21 (22)
  • [48] Unrestricted deep metric learning using neural networks interaction
    Soheil Mehralian
    Mohammad Teshnehlab
    Babak Nasersharif
    Pattern Analysis and Applications, 2021, 24 : 1699 - 1711
  • [49] Deep learning-based stochastic ground motion modeling using generative adversarial and convolutional neural networks
    Masoudifar, Mohsen
    Mahsuli, Mojtaba
    Taciroglu, Ertugrul
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2025, 194
  • [50] Application of deep generative networks for SAR/ISAR: a review
    Zhang, Jiawei
    Liu, Zhen
    Jiang, Weidong
    Liu, Yongxiang
    Zhou, Xiaolin
    Li, Xiang
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (10) : 11905 - 11983