Density estimation using deep generative neural networks

被引:60
作者
Liu, Qiao [1 ,2 ,3 ,4 ]
Xu, Jiaze [2 ,3 ,4 ,5 ,6 ]
Jiang, Rui [1 ]
Wong, Wing Hung [2 ,3 ,4 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Ctr Synthet & Syst Biol, Dept Automat,Minist Educ,Key Lab Bioinformat,Res, Beijing 100084, Peoples R China
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[4] Stanford Univ, Bio X Program, Stanford, CA 94305 USA
[5] Tsinghua Univ, Ctr Stat Sci, Beijing 100084, Peoples R China
[6] Tsinghua Univ, Dept Ind Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
density estimation; neural network; deep learning; importance sampling; GAN;
D O I
10.1073/pnas.2101344118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Density estimation is one of the fundamental problems in both statistics and machine learning. In this study, we propose Roundtrip, a computational framework for general-purpose density estimation based on deep generative neural networks. Roundtrip retains the generative power of deep generative models, such as generative adversarial networks (GANs) while it also provides estimates of density values, thus supporting both data generation and density estimation. Unlike previous neural density estimators that put stringent conditions on the transformation from the latent space to the data space, Roundtrip enables the use of much more general mappings where target density is modeled by learning a manifold induced from a base density (e.g., Gaussian distribution). Roundtrip provides a statistical framework for GAN models where an explicit evaluation of density values is feasible. In numerical experiments, Roundtrip exceeds state-of-the-art performance in a diverse range of density estimation tasks.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Autism Spectrum Disorder Detection Using Parallel Deep Convolution Neural Network and Generative Adversarial Networks
    Dhamale, Triveni D.
    Bhandari, Sheetal U.
    Harpale, Varsha K.
    Nandan, Durgesh
    TRAITEMENT DU SIGNAL, 2024, 41 (02) : 643 - 652
  • [32] Bypassing Detection of URL-based Phishing Attacks Using Generative Adversarial Deep Neural Networks
    AlEroud, Ahmed
    Karabatis, George
    PROCEEDINGS OF THE SIXTH INTERNATIONAL WORKSHOP ON SECURITY AND PRIVACY ANALYTICS (IWSPA'20), 2020, : 53 - 60
  • [33] Neural networks generative models for time series
    Gatta, Federico
    Giampaolo, Fabio
    Prezioso, Edoardo
    Mei, Gang
    Cuomo, Salvatore
    Piccialli, Francesco
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (10) : 7920 - 7939
  • [34] Cross-Domain Fault Diagnosis of Rolling Element Bearings Using Deep Generative Neural Networks
    Li, Xiang
    Zhang, Wei
    Ding, Qian
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (07) : 5525 - 5534
  • [35] ARGAN: Adversarially Robust Generative Adversarial Networks for Deep Neural Networks Against Adversarial Examples
    Choi, Seok-Hwan
    Shin, Jin-Myeong
    Liu, Peng
    Choi, Yoon-Ho
    IEEE ACCESS, 2022, 10 : 33602 - 33615
  • [36] BREAST DENSITY CLASSIFICATION WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
    Wu, Nan
    Geras, Krzysztof J.
    Shen, Yiqiu
    Su, Jingyi
    Kim, Gene
    Kim, Eric
    Wolfson, Stacey
    Moy, Linda
    Cho, Kyunghyun
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 6682 - 6686
  • [37] Estimation of the Volume of the Left Ventricle From MRI Images Using Deep Neural Networks
    Liao, Fangzhou
    Chen, Xi
    Hu, Xiaolin
    Song, Sen
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (02) : 495 - 504
  • [38] Drift estimation for a multi-dimensional diffusion process using deep neural networks
    Oga, Akihiro
    Koike, Yuta
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 170
  • [39] Generating word images using Deep Generative Adversarial Networks
    Turhan, Ceren Guzel
    Bilge, Hasan Sakir
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [40] Image synthesis of apparel stitching defects using deep convolutional generative adversarial networks
    ul-Huda, Noor
    Ahmad, Haseeb
    Banjar, Ameen
    Alzahrani, Ahmed Omar
    Ahmad, Ibrar
    Naeem, M. Salman
    HELIYON, 2024, 10 (04)