Density estimation using deep generative neural networks

被引:58
|
作者
Liu, Qiao [1 ,2 ,3 ,4 ]
Xu, Jiaze [2 ,3 ,4 ,5 ,6 ]
Jiang, Rui [1 ]
Wong, Wing Hung [2 ,3 ,4 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Ctr Synthet & Syst Biol, Dept Automat,Minist Educ,Key Lab Bioinformat,Res, Beijing 100084, Peoples R China
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[4] Stanford Univ, Bio X Program, Stanford, CA 94305 USA
[5] Tsinghua Univ, Ctr Stat Sci, Beijing 100084, Peoples R China
[6] Tsinghua Univ, Dept Ind Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
density estimation; neural network; deep learning; importance sampling; GAN;
D O I
10.1073/pnas.2101344118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Density estimation is one of the fundamental problems in both statistics and machine learning. In this study, we propose Roundtrip, a computational framework for general-purpose density estimation based on deep generative neural networks. Roundtrip retains the generative power of deep generative models, such as generative adversarial networks (GANs) while it also provides estimates of density values, thus supporting both data generation and density estimation. Unlike previous neural density estimators that put stringent conditions on the transformation from the latent space to the data space, Roundtrip enables the use of much more general mappings where target density is modeled by learning a manifold induced from a base density (e.g., Gaussian distribution). Roundtrip provides a statistical framework for GAN models where an explicit evaluation of density values is feasible. In numerical experiments, Roundtrip exceeds state-of-the-art performance in a diverse range of density estimation tasks.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Generative Models for Fashion Industry using Deep Neural Networks
    Lomov, Ildar
    Makarov, Ilya
    2019 2ND INTERNATIONAL CONFERENCE ON COMPUTER APPLICATIONS & INFORMATION SECURITY (ICCAIS), 2019,
  • [2] Prediction of Molecular Conformation Using Deep Generative Neural Networks
    Xu, Congsheng
    Lu, Yi
    Deng, Xiaomei
    Yu, Peiyuan
    CHINESE JOURNAL OF CHEMISTRY, 2023, 41 (24) : 3684 - 3688
  • [3] High Dimensional Channel Estimation Using Deep Generative Networks
    Balevi, Eren
    Doshi, Akash
    Jalal, Ajil
    Dimakis, Alexandros
    Andrews, Jeffrey G.
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (01) : 18 - 30
  • [4] Face deidentification with generative deep neural networks
    Meden, Blaz
    Malli, Refik Can
    Fabijan, Sebastjan
    Ekenel, Hazim Kemal
    Struc, Vitomir
    Peer, Peter
    IET SIGNAL PROCESSING, 2017, 11 (09) : 1046 - 1054
  • [5] OPENING DEEP NEURAL NETWORKS WITH GENERATIVE MODELS
    Vendramini, Marcos
    Oliveira, Hugo
    Machado, Alexei
    dos Santos, Jefersson A.
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1314 - 1318
  • [6] Probability density estimation using artificial neural networks
    Likas, A
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 135 (02) : 167 - 175
  • [7] Conditionally Tractable Density Estimation using Neural Networks
    Dong, Hailiang
    Roy, Chiradeep
    Rahman, Tahrima
    Gogate, Vibhav
    Ruozzi, Nicholas
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [8] Rate of convergence in density estimation using neural networks
    Modha, DS
    Masry, E
    NEURAL COMPUTATION, 1996, 8 (05) : 1107 - 1122
  • [9] Estimation of Stokes Parameters Using Deep Neural Networks
    Manuel Raygoza-Romero, Joan
    Hussein Lopez-Nava, Irvin
    Cesar Ramirez-Velez, Julio
    PATTERN RECOGNITION, MCPR 2023, 2023, 13902 : 159 - 168
  • [10] Tiller estimation method using deep neural networks
    Kinose, Rikuya
    Utsumi, Yuzuko
    Iwamura, Masakazu
    Kise, Koichi
    FRONTIERS IN PLANT SCIENCE, 2023, 13