Bose condensation and the BTZ black hole

被引:2
作者
Vaz, Cenalo [1 ,2 ]
Wijewardhana, L. C. R. [2 ]
机构
[1] Univ Cincinnati, RWC, Cincinnati, OH 45221 USA
[2] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA
关键词
BEKENSTEIN-HAWKING ENTROPY; LOOP QUANTUM-GRAVITY; EINSTEIN CONDENSATION; 2+1 DIMENSIONS; THERMODYNAMICS; GEOMETRY; DUST;
D O I
10.1088/0264-9381/27/5/055009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Although all popular approaches to quantum gravity are able to recover the Bekenstein-Hawking entropy-area law in the thermodynamic limit, there are significant differences in their descriptions of the microstates and in the application of statistics. Therefore, they can have significantly different phenomenological implications. For example, requiring indistinguishability of the elementary degrees of freedom should lead to changes in the black hole's radiative properties away from the thermodynamic limit and at low temperatures. We demonstrate this for the Banados-Teitelboim-Zanelli (BTZ) black hole. The energy eigenstates and statistical entropy in the thermodynamic limit of the BTZ black hole were obtained earlier by us via symmetry reduced canonical quantum gravity. In that model the BTZ black hole behaves as a system of Bosonic mass shells moving in a one-dimensional harmonic trap. Bose condensation does not occur in the thermodynamic limit but this system possesses a finite critical temperature, T-c, and exhibits a large condensate fraction below T-c when the number of shells is finite.
引用
收藏
页数:14
相关论文
共 35 条
[1]   Black hole state counting in loop quantum gravity:: A number-theoretical approach [J].
Agullo, Ivan ;
Barbero G., J. Fernando ;
Diaz-Polo, Jacobo ;
Fernandez-Borja, Enrique ;
Villasenor, Eduardo J. S. .
PHYSICAL REVIEW LETTERS, 2008, 100 (21)
[2]   Quantum geometry and black hole entropy [J].
Ashtekar, A ;
Baez, J ;
Corichi, A ;
Krasnov, K .
PHYSICAL REVIEW LETTERS, 1998, 80 (05) :904-907
[3]   BLACK-HOLE ENTROPY AND THE DIMENSIONAL CONTINUATION OF THE GAUSS-BONNET THEOREM [J].
BANADOS, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW LETTERS, 1994, 72 (07) :957-960
[4]   GEOMETRY OF THE 2+1 BLACK-HOLE [J].
BANADOS, M ;
HENNEAUX, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW D, 1993, 48 (04) :1506-1525
[5]   4 LAWS OF BLACK HOLE MECHANICS [J].
BARDEEN, JM ;
CARTER, B ;
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (02) :161-170
[6]   BLACK HOLES AND SECOND LAW [J].
BEKENSTEIN, JD .
LETTERE AL NUOVO CIMENTO, 1972, 4 (15) :737-+
[7]   BLACK HOLES AND ENTROPY [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1973, 7 (08) :2333-2346
[8]   Universal near-horizon conformal structure and black hole entropy [J].
Chakrabarti, Sayan K. ;
Gupta, Kumar S. ;
Sen, Siddhartha .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (16-17) :2547-2561
[9]   Black hole entropy quantization [J].
Corichi, Alejandro ;
Diaz-Polo, Jacobo ;
Fernandez-Borja, Enrique .
PHYSICAL REVIEW LETTERS, 2007, 98 (18)
[10]   Exact counting of supersymmetric black hole microstates [J].
Dabholkar, A .
PHYSICAL REVIEW LETTERS, 2005, 94 (24)