Light Field Image Sparse Coding via CNN-Based EPI Super-Resolution

被引:0
作者
Zhao, Jinbo [1 ]
An, Ping [1 ]
Huang, Xinpeng [1 ]
Shan, Liang [1 ]
Ma, Ran [1 ]
机构
[1] Shanghai Univ, Sch Commun & Informat Engn, Shanghai Inst Adv Commun & Data Sci, Shanghai 200444, Peoples R China
来源
2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP) | 2018年
基金
中国国家自然科学基金;
关键词
light field; compression; sparse coding; EPI super-resolution; deep learning; convolutional neural network;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel light field (LF) image compression scheme by super resolving the epipolar plane image (EPI) via convolutional neural network (CNN). In the scheme, we first decompose the LF image into sub-aperture images (SAIs), and only one quarter of them are compressed on the encoding side to reduce the bitrate. On the decoding side, we use these selected SAIs to reconstruct the entire LF by taking advantage of the special structure of EPI. The low-resolution EPIs generated from the sparse SAIs are super resolved by using deep residual network and the output high-resolution EPIs are used to rebuild the dense SAIs. Experimental results show the superior performance of our scheme, which achieve 1.46 dB quality improvement and 35.85 percent bit rate reduction on average compared with the typical pseudo-sequence-based coding method.
引用
收藏
页数:4
相关论文
共 13 条
  • [1] Bjontegaard G, 2001, document VCEG-M33
  • [2] Light Field Compression With Disparity-Guided Sparse Coding Based on Structural Key Views
    Chen, Jie
    Hou, Junhui
    Chau, Lap-Pui
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) : 314 - 324
  • [3] HEVC-BASED LIGHT FIELD IMAGE CODING WITH BI-PREDICTED SELF-SIMILARITY COMPENSATION
    Conti, Caroline
    Nunes, Paulo
    Soares, Luis Ducla
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2016,
  • [4] Caffe: Convolutional Architecture for Fast Feature Embedding
    Jia, Yangqing
    Shelhamer, Evan
    Donahue, Jeff
    Karayev, Sergey
    Long, Jonathan
    Girshick, Ross
    Guadarrama, Sergio
    Darrell, Trevor
    [J]. PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, : 675 - 678
  • [5] Image Reshaping for Efficient Compression of Plenoptic Content
    Jin, Xin
    Han, Haixu
    Dai, Qionghai
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2017, 11 (07) : 1173 - 1186
  • [6] Learning-Based View Synthesis for Light Field Cameras
    Kalantari, Nima Khademi
    Wang, Ting-Chun
    Ramamoorthi, Ravi
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2016, 35 (06):
  • [7] Kim J, 2016, PROC CVPR IEEE, P1637, DOI [10.1109/CVPR.2016.182, 10.1109/CVPR.2016.181]
  • [8] Kingma D. P., P 3 INT C LEARN REPR
  • [9] Coding of Focused Plenoptic Contents by Displacement Intra Prediction
    Li, Yun
    Sjostrom, Marten
    Olsson, Roger
    Jennehag, Ulf
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2016, 26 (07) : 1308 - 1319
  • [10] Scalable Coding of Plenoptic Images by Using a Sparse Set and Disparities
    Li, Yun
    Sjostrom, Marten
    Olsson, Roger
    Jennehag, Ulf
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (01) : 80 - 91