A note on fractional moments for the one-dimensional continuum Anderson model

被引:9
|
作者
Hamza, Eman [2 ]
Sims, Robert [3 ]
Stolz, Guenter [1 ]
机构
[1] Univ Alabama, Dept Math, Birmingham, AL 35294 USA
[2] Cairo Univ, Fac Sci, Dept Phys, Cairo 12613, Egypt
[3] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
Anderson model; Fractional moments method; Anderson localization; SCHRODINGER-OPERATORS; LOCALIZATION; BERNOULLI; FLUCTUATION; BOUNDS;
D O I
10.1016/j.jmaa.2009.11.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a proof of dynamical localization in the form of exponential decay of spatial correlations in the time evolution for the one-dimensional continuum Anderson model via the fractional moments method. This follows via exponential decay of fractional moments of the Green function, which is shown to hold at arbitrary energy and for any single-site distribution with bounded, compactly supported density. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:435 / 446
页数:12
相关论文
共 50 条
  • [41] Note on the One-Dimensional Holstein-Hubbard Model
    Miyao, Tadahiro
    JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (02) : 436 - 447
  • [42] Note on the One-Dimensional Holstein-Hubbard Model
    Tadahiro Miyao
    Journal of Statistical Physics, 2012, 147 : 436 - 447
  • [43] A ONE-DIMENSIONAL CONTINUUM MODEL FOR SHAPE-MEMORY ALLOYS
    ABEYARATNE, R
    KIM, SJ
    KNOWLES, JK
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1994, 31 (16) : 2229 - 2249
  • [44] One-dimensional elastic continuum model of enterocyte layer migration
    Mi, Qi
    Swigon, David
    Riviere, Beatrice
    Cetin, Selma
    Vodovotz, Yoram
    Hackam, David J.
    BIOPHYSICAL JOURNAL, 2007, 93 (11) : 3745 - 3752
  • [45] Exact solution of a one-dimensional continuum percolation model - Comment
    Pugnaloni, LA
    Gianotti, RD
    Vericat, F
    PHYSICAL REVIEW E, 1997, 56 (05): : 6206 - 6207
  • [46] ONE-DIMENSIONAL STEADY CONTINUUM MODEL OF RETRACTION OF PSEUDOPOD IN LEUKOCYTES
    ZHU, C
    SKALAK, R
    SCHMIDSCHONBEIN, GW
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1989, 111 (01): : 69 - 77
  • [47] A one-dimensional continuum model for thermoelectric phase transformations in ferroelectrics
    Kim, SJ
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2000, 37 (08) : 1145 - 1164
  • [48] A continuum one-dimensional SOC model for thermal transport in tokamaks
    Tangri, V
    Das, A
    Kaw, P
    Singh, R
    NUCLEAR FUSION, 2003, 43 (12) : 1740 - 1747
  • [49] One-dimensional analysis of a continuum model for structure in electrorheological fluids
    von Pfeil, K
    Graham, MD
    Klingenberg, DJ
    Morris, JF
    COMPUTATIONAL METHODS IN MULTIPHASE FLOW II, 2004, 37 : 275 - 285
  • [50] Parametrization of Transfer Matrix: for One-Dimensional Anderson Model with Diagonal Disorder
    Kang Kai
    Qin Shao-Jing
    Wang Chui-Lin
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 54 (04) : 735 - 740