A note on fractional moments for the one-dimensional continuum Anderson model

被引:9
|
作者
Hamza, Eman [2 ]
Sims, Robert [3 ]
Stolz, Guenter [1 ]
机构
[1] Univ Alabama, Dept Math, Birmingham, AL 35294 USA
[2] Cairo Univ, Fac Sci, Dept Phys, Cairo 12613, Egypt
[3] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
Anderson model; Fractional moments method; Anderson localization; SCHRODINGER-OPERATORS; LOCALIZATION; BERNOULLI; FLUCTUATION; BOUNDS;
D O I
10.1016/j.jmaa.2009.11.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a proof of dynamical localization in the form of exponential decay of spatial correlations in the time evolution for the one-dimensional continuum Anderson model via the fractional moments method. This follows via exponential decay of fractional moments of the Green function, which is shown to hold at arbitrary energy and for any single-site distribution with bounded, compactly supported density. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:435 / 446
页数:12
相关论文
共 50 条
  • [1] Dynamical Localization for the One-Dimensional Continuum Anderson Model in a Decaying Random Potential
    Bourget, Olivier
    Moreno Flores, Gregorio R.
    Taarabt, Amal
    ANNALES HENRI POINCARE, 2020, 21 (10): : 3095 - 3118
  • [2] Dynamical Localization for the One-Dimensional Continuum Anderson Model in a Decaying Random Potential
    Olivier Bourget
    Gregorio R. Moreno Flores
    Amal Taarabt
    Annales Henri Poincaré, 2020, 21 : 3095 - 3118
  • [3] One-dimensional periodic Anderson model
    Gulacsi, M.
    MODERN PHYSICS LETTERS B, 2014, 28 (06):
  • [4] Localization for one-dimensional, continuum, Bernoulli-Anderson models
    Damanik, D
    Sims, R
    Stolz, G
    DUKE MATHEMATICAL JOURNAL, 2002, 114 (01) : 59 - 100
  • [5] A note on one-dimensional time fractional ODEs
    Feng, Yuanyuan
    Li, Lei
    Liu, Jian-Guo
    Xu, Xiaoqian
    APPLIED MATHEMATICS LETTERS, 2018, 83 : 87 - 94
  • [6] PHASE RANDOMNESS IN THE ONE-DIMENSIONAL ANDERSON MODEL
    STONE, AD
    ALLAN, DC
    JOANNOPOULOS, JD
    PHYSICAL REVIEW B, 1983, 27 (02): : 836 - 843
  • [7] Localized entanglement in one-dimensional Anderson model
    Li, HB
    Wang, XG
    MODERN PHYSICS LETTERS B, 2005, 19 (11): : 517 - 527
  • [8] EXPONENTIAL LOCALIZATION IN THE ONE-DIMENSIONAL ANDERSON MODEL
    KIMBALL, JC
    PHYSICAL REVIEW B, 1981, 24 (06): : 2964 - 2971
  • [9] Classical representation of the one-dimensional Anderson model
    Izrailev, FM
    Ruffo, S
    Tessieri, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (23): : 5263 - 5270
  • [10] THE ONE-DIMENSIONAL ANDERSON MODEL - A SUPERSYMMETRIC TREATMENT
    MARKOS, P
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1988, 21 (14): : 2647 - 2664