Phase transitions in large deviations of reset processes

被引:41
作者
Harris, Rosemary J. [1 ]
Touchette, Hugo [2 ,3 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Natl Inst Theoret Phys NITheP, ZA-7600 Stellenbosch, South Africa
[3] Univ Stellenbosch, Inst Theoret Phys, Dept Phys, ZA-7600 Stellenbosch, South Africa
基金
新加坡国家研究基金会;
关键词
reset processes; large deviations; dynamical phase transitions; DNA denaturation; DNA DENATURATION TRANSITION; STATISTICAL-MECHANICS; M/M/1; QUEUE; CATASTROPHES; MODELS; BIRTH; IMMIGRATION; CHAIN; DEATH;
D O I
10.1088/1751-8121/aa5734
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the large deviations of additive quantities, such as energy or current, in stochastic processes with intermittent reset. Via a mapping from a discrete-time reset process to the Poland-Scheraga model for DNA denaturation, we derive conditions for observing first-order or continuous dynamical phase transitions in the fluctuations of such quantities and confirm these conditions on simple random walk examples. These results apply to reset Markov processes, but also show more generally that subleading terms in generating functions can lead to non-analyticities in large deviation functions of 'compound processes' or 'random evolutions' switching stochastically between two or more subprocesses.
引用
收藏
页数:13
相关论文
共 33 条
[1]   Intermittent search process and teleportation [J].
Benichou, O. ;
Moreau, M. ;
Suet, P.-H. ;
Voituriez, R. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (23)
[2]   THE EXTINCTION TIME OF A BIRTH, DEATH AND CATASTROPHE PROCESS AND OF A RELATED DIFFUSION-MODEL [J].
BROCKWELL, PJ .
ADVANCES IN APPLIED PROBABILITY, 1985, 17 (01) :42-52
[3]   BIRTH, IMMIGRATION AND CATASTROPHE PROCESSES [J].
BROCKWELL, PJ ;
GANI, J ;
RESNICK, SI .
ADVANCES IN APPLIED PROBABILITY, 1982, 14 (04) :709-731
[4]  
Dembo A, 2010, Large Deviations Techniques and Applications
[5]   A Continuous-Time Ehrenfest Model with Catastrophes and Its Jump-Diffusion Approximation [J].
Dharmaraja, Selvamuthu ;
Di Crescenzo, Antonio ;
Giorno, Virginia ;
Nobile, Amelia G. .
JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (02) :326-345
[6]   On the M/M/1 queue with catastrophes and its continuous approximation [J].
Di Crescenzo, A ;
Giorno, V ;
Nobile, AG ;
Ricciardi, LM .
QUEUEING SYSTEMS, 2003, 43 (04) :329-347
[7]   A Double-ended Queue with Catastrophes and Repairs, and a Jump-diffusion Approximation [J].
Di Crescenzo, Antonio ;
Giorno, Virginia ;
Kumar, Balasubramanian Krishna ;
Nobile, Amelia G. .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2012, 14 (04) :937-954
[8]   Non-equilibrium steady states of stochastic processes with intermittent resetting [J].
Eule, Stephan ;
Metzger, Jakob J. .
NEW JOURNAL OF PHYSICS, 2016, 18
[9]   Optimal diffusive search: nonequilibrium resetting versus equilibrium dynamics [J].
Evans, Martin R. ;
Majumdar, Satya N. ;
Mallick, Kirone .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (18)
[10]   Diffusion with optimal resetting [J].
Evans, Martin R. ;
Majumdar, Satya N. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (43)