P1-nonconforming quadrilateral finite element methods for second-order elliptic problems

被引:132
作者
Park, C
Sheen, D
机构
[1] Univ Calif Los Angeles, Inst Pure & Appl Math, Los Angeles, CA 90095 USA
[2] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
关键词
nonconforming finite elements; quadrilateral; elliptic problems;
D O I
10.1137/S0036142902404923
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A P-1-nonconforming quadrilateral finite element is introduced for second-order elliptic problems in two dimensions. Unlike the usual quadrilateral nonconforming finite elements, which contain quadratic polynomials or polynomials of degree greater than 2, our element consists of only piecewise linear polynomials that are continuous at the midpoints of edges. One of the benefits of using our element is convenience in using rectangular or quadrilateral meshes with the least degrees of freedom among the nonconforming quadrilateral elements. An optimal rate of convergence is obtained. Also a nonparametric reference scheme is introduced in order to systematically compute stiffness and mass matrices on each quadrilateral. An extension of the P-1-nonconforming element to three dimensions is also given. Finally, several numerical results are reported to confirm the effective nature of the proposed new element.
引用
收藏
页码:624 / 640
页数:17
相关论文
共 17 条
[1]  
[Anonymous], RAIRO R
[2]   Approximation by quadrilateral finite elements [J].
Arnold, DN ;
Boffi, D ;
Falk, RS .
MATHEMATICS OF COMPUTATION, 2002, 71 (239) :909-922
[3]  
BRENNER SC, 1992, MATH COMPUT, V59, P321, DOI 10.1090/S0025-5718-1992-1140646-2
[4]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[5]   Nonconforming quadrilateral finite elements: a correction (vol 37, pg 253, 2000) [J].
Cai, Z ;
Douglas, J ;
Santos, JE ;
Sheen, D ;
Ye, X .
CALCOLO, 2000, 37 (04) :253-254
[6]   A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations [J].
Cai, ZQ ;
Douglas, J ;
Ye, X .
CALCOLO, 1999, 36 (04) :215-232
[7]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[8]  
Ciarlet P.G., 1972, ARCH RATION MECH AN, V46, P177, DOI [10.1007/BF00252458, /10.1007/BF00252458, DOI 10.1007/BF00252458]
[9]  
Douglas J, 1999, RAIRO-MATH MODEL NUM, V33, P747
[10]  
Girault V., 2012, FINITE ELEMENT METHO, V5