Practical Quantum Key Distribution That is Secure Against Side Channels

被引:24
作者
Navarrete, Alvaro [1 ]
Pereira, Margarida [1 ]
Curty, Marcos [1 ]
Tamaki, Kiyoshi [2 ]
机构
[1] Univ Vigo, Dept Signal Theory & Commun, EI Telecomunicac, E-36310 Vigo, Spain
[2] Univ Toyama, Fac Engn, Gofuku 3190, Toyama 9308555, Japan
基金
欧盟地平线“2020”;
关键词
D O I
10.1103/PhysRevApplied.15.034072
中图分类号
O59 [应用物理学];
学科分类号
摘要
There is a large gap between theory and practice in quantum key distribution (QKD) because real devices do not satisfy the assumptions required by the security proofs. Here, we close this gap by introducing a simple and practical measurement-device-independent-QKD type of protocol, based on the transmission of coherent light, for which we prove its security against any possible imperfection and/or side channel from the quantum communication part of the QKD devices. Our approach only requires to experimentally characterize an upper bound of one single parameter for each of the pulses sent, which describes the quality of the source. Moreover, unlike device-independent (DI) QKD, it can accommodate information leakage from the users' laboratories, which is essential to guarantee the security of QKD implementations. In this sense, its security goes beyond that provided by DI QKD, yet it delivers a secret key rate that is various orders of magnitude greater than that of DI QKD.
引用
收藏
页数:12
相关论文
共 69 条
[1]   Device-independent security of quantum cryptography against collective attacks [J].
Acin, Antonio ;
Brunner, Nicolas ;
Gisin, Nicolas ;
Massar, Serge ;
Pironio, Stefano ;
Scarani, Valerio .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[2]  
[Anonymous], 1967, Tohoku Mathematical Journal, Second Series, DOI 10.2748/tmj/1178243286
[3]  
Bell JS., 1964, PHYSICS, V1, P195, DOI DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195
[4]   Secure Quantum Key Distribution over 421 km of Optical Fiber [J].
Boaron, Alberto ;
Boso, Gianluca ;
Rusca, Davide ;
Vulliez, Cedric ;
Autebert, Claire ;
Caloz, Misael ;
Perrenoud, Matthieu ;
Gras, Gaetan ;
Bussieres, Felix ;
Li, Ming-Jun ;
Nolan, Daniel ;
Martin, Anthony ;
Zbinden, Hugo .
PHYSICAL REVIEW LETTERS, 2018, 121 (19)
[5]   Discrete-phase-randomized coherent state source and its application in quantum key distribution [J].
Cao, Zhu ;
Zhang, Zhen ;
Lo, Hoi-Kwong ;
Ma, Xiongfeng .
NEW JOURNAL OF PHYSICS, 2015, 17
[6]   Sending-or-Not-Sending with Independent Lasers: Secure Twin-Field Quantum Key Distribution over 509 km [J].
Chen, Jiu-Peng ;
Zhang, Chi ;
Liu, Yang ;
Jiang, Cong ;
Zhang, Weijun ;
Hu, Xiao-Long ;
Guan, Jian-Yu ;
Yu, Zong-Wen ;
Xu, Hai ;
Lin, Jin ;
Li, Ming-Jun ;
Chen, Hao ;
Li, Hao ;
You, Lixing ;
Wang, Zhen ;
Wang, Xiang-Bin ;
Zhang, Qiang ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2020, 124 (07)
[7]   PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES [J].
CLAUSER, JF ;
HORNE, MA ;
SHIMONY, A ;
HOLT, RA .
PHYSICAL REVIEW LETTERS, 1969, 23 (15) :880-&
[8]   Twin-Field Quantum Key Distribution without Phase Postselection [J].
Cui, Chaohan ;
Yin, Zhen-Qiang ;
Wang, Rong ;
Chen, Wei ;
Wang, Shuang ;
Guo, Guang-Can ;
Han, Zheng-Fu .
PHYSICAL REVIEW APPLIED, 2019, 11 (03)
[9]   Tight finite-key security for twin-field quantum key distribution [J].
Curras-Lorenzo, Guillermo ;
Navarrete, Alvaro ;
Azuma, Koji ;
Kato, Go ;
Curty, Marcos ;
Razavi, Mohsen .
NPJ QUANTUM INFORMATION, 2021, 7 (01)
[10]  
Curty M., 2019, SCI REP-UK, V9, P1