Resistant Fit Regression Normalization for Single-cell RNA-seq Data

被引:0
作者
Kuang, Da [1 ]
Kim, Junhyong [2 ]
机构
[1] Univ Penn, Dept Comp & Informat Sci, 200 S 33Rd St, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
来源
2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020) | 2020年
关键词
Single-cell; RNA-seq; Normalization; Robust Regression; Resistant Fit;
D O I
10.1109/BIBE50027.2020.00046
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
All mRNA quantification, including single-cell mRNA sequencing, requires normalization to correct for technical variation and to make measurements of two or more samples comparable. The choice of normalization method impacts the downstream analysis. All common approaches (applying scaling factors, variational inference, and quantile regression) currently focus on removing technical variations but ignore localized variations of biological origin. To address this problem, we propose a new framework to normalize for technical effects while also aligning RNA-seq datasets for a biologically meaningful comparison. We present an iterative optimization method using the notion of a resistant fit regression to isolate localized perturbations. Both simulated data and real data are resistant-fit normalized and compared with popular normalization methods. This comparison shows that the resistant fit works better under localized biological variations.
引用
收藏
页码:236 / 240
页数:5
相关论文
共 50 条
[41]   DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data [J].
Arisdakessian, Cedric ;
Poirion, Olivier ;
Yunits, Breck ;
Zhu, Xun ;
Garmire, Lana X. .
GENOME BIOLOGY, 2019, 20 (01)
[42]   DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data [J].
Cédric Arisdakessian ;
Olivier Poirion ;
Breck Yunits ;
Xun Zhu ;
Lana X. Garmire .
Genome Biology, 20
[43]   HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD) [J].
Yen-Jung Chiu ;
Chung-En Ni ;
Yen-Hua Huang .
BMC Medical Genomics, 16
[44]   Improving replicability in single-cell RNA-Seq cell type discovery with Dune [J].
de Bezieux, Hector Roux ;
Street, Kelly ;
Fischer, Stephan ;
Van den Berge, Koen ;
Chance, Rebecca ;
Risso, Davide ;
Gillis, Jesse ;
Ngai, John ;
Purdom, Elizabeth ;
Dudoit, Sandrine .
BMC BIOINFORMATICS, 2024, 25 (01)
[45]   HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD) [J].
Chiu, Yen-Jung ;
Ni, Chung-En ;
Huang, Yen-Hua .
BMC MEDICAL GENOMICS, 2023, 16 (SUPPL 2)
[46]   High-Order Correlation Integration for Single-Cell or Bulk RNA-seq Data Analysis [J].
Tang, Hui ;
Zeng, Tao ;
Chen, Luonan .
FRONTIERS IN GENETICS, 2019, 10
[47]   Accurate feature selection improves single-cell RNA-seq cell clustering [J].
Su, Kenong ;
Yu, Tianwei ;
Wu, Hao .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
[48]   A test metric for assessing single-cell RNA-seq batch correction [J].
Buettner, Maren ;
Miao, Zhichao ;
Wolf, F. Alexander ;
Teichmann, Sarah A. ;
Theis, Fabian J. .
NATURE METHODS, 2019, 16 (01) :43-+
[49]   VASC: Dimension Reduction and Visualization of Single-cell RNA-seq Data by Deep Variational Autoencoder [J].
Wang, Dongfang ;
Gu, Jin .
GENOMICS PROTEOMICS & BIOINFORMATICS, 2018, 16 (05) :320-331
[50]   Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model [J].
F. William Townes ;
Stephanie C. Hicks ;
Martin J. Aryee ;
Rafael A. Irizarry .
Genome Biology, 20