Resistant Fit Regression Normalization for Single-cell RNA-seq Data

被引:0
作者
Kuang, Da [1 ]
Kim, Junhyong [2 ]
机构
[1] Univ Penn, Dept Comp & Informat Sci, 200 S 33Rd St, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
来源
2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020) | 2020年
关键词
Single-cell; RNA-seq; Normalization; Robust Regression; Resistant Fit;
D O I
10.1109/BIBE50027.2020.00046
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
All mRNA quantification, including single-cell mRNA sequencing, requires normalization to correct for technical variation and to make measurements of two or more samples comparable. The choice of normalization method impacts the downstream analysis. All common approaches (applying scaling factors, variational inference, and quantile regression) currently focus on removing technical variations but ignore localized variations of biological origin. To address this problem, we propose a new framework to normalize for technical effects while also aligning RNA-seq datasets for a biologically meaningful comparison. We present an iterative optimization method using the notion of a resistant fit regression to isolate localized perturbations. Both simulated data and real data are resistant-fit normalized and compared with popular normalization methods. This comparison shows that the resistant fit works better under localized biological variations.
引用
收藏
页码:236 / 240
页数:5
相关论文
共 50 条
[31]   Review of single-cell RNA-seq data clustering for cell-type identification and characterization [J].
Zhang, Shixiong ;
Li, Xiangtao ;
Lin, Jiecong ;
Lin, Qiuzhen ;
Wong, Ka-Chun .
RNA, 2023, 29 (05) :517-530
[32]   CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data [J].
Lin, Peijie ;
Troup, Michael ;
Ho, Joshua W. K. .
GENOME BIOLOGY, 2017, 18
[33]   CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data [J].
Peijie Lin ;
Michael Troup ;
Joshua W. K. Ho .
Genome Biology, 18
[34]   Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists [J].
Zhu, Xun ;
Wolfgruber, Thomas K. ;
Tasato, Austin ;
Arisdakessian, Cedric ;
Garmire, David G. ;
Garmire, Lana X. .
GENOME MEDICINE, 2017, 9
[35]   An interpretable framework for clustering single-cell RNA-Seq datasets [J].
Zhang, Jesse M. ;
Fan, Jue ;
Fan, Christina ;
Rosenfeld, David ;
Tse, David N. .
BMC BIOINFORMATICS, 2018, 19
[36]   A general and flexible method for signal extraction from single-cell RNA-seq data [J].
Risso, Davide ;
Perraudeau, Fanny ;
Gribkova, Svetlana ;
Dudoit, Sandrine ;
Vert, Jean-Philippe .
NATURE COMMUNICATIONS, 2018, 9
[37]   DECENT: differential expression with capture efficiency adjustmeNT for single-cell RNA-seq data [J].
Ye, Chengzhong ;
Speed, Terence P. ;
Salim, Agus .
BIOINFORMATICS, 2019, 35 (24) :5155-5162
[38]   Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists [J].
Xun Zhu ;
Thomas K. Wolfgruber ;
Austin Tasato ;
Cédric Arisdakessian ;
David G. Garmire ;
Lana X. Garmire .
Genome Medicine, 9
[39]   Use of scREAD to explore and analyze single-cell and single-nucleus RNA-seq data for Alzheimer's disease [J].
Wang, Cankun ;
Xiang, Yujia ;
Fu, Hongjun ;
Ma, Qin .
STAR PROTOCOLS, 2021, 2 (02)
[40]   A Survey on Methods for Predicting Polyadenylation Sites from DNA Sequences, Bulk RNA-seq, and Single-cell RNA-seq [J].
Ye, Wenbin ;
Lian, Qiwei ;
Ye, Congting ;
Wu, Xiaohui .
GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (01) :67-83