Resistant Fit Regression Normalization for Single-cell RNA-seq Data

被引:0
作者
Kuang, Da [1 ]
Kim, Junhyong [2 ]
机构
[1] Univ Penn, Dept Comp & Informat Sci, 200 S 33Rd St, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
来源
2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020) | 2020年
关键词
Single-cell; RNA-seq; Normalization; Robust Regression; Resistant Fit;
D O I
10.1109/BIBE50027.2020.00046
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
All mRNA quantification, including single-cell mRNA sequencing, requires normalization to correct for technical variation and to make measurements of two or more samples comparable. The choice of normalization method impacts the downstream analysis. All common approaches (applying scaling factors, variational inference, and quantile regression) currently focus on removing technical variations but ignore localized variations of biological origin. To address this problem, we propose a new framework to normalize for technical effects while also aligning RNA-seq datasets for a biologically meaningful comparison. We present an iterative optimization method using the notion of a resistant fit regression to isolate localized perturbations. Both simulated data and real data are resistant-fit normalized and compared with popular normalization methods. This comparison shows that the resistant fit works better under localized biological variations.
引用
收藏
页码:236 / 240
页数:5
相关论文
共 50 条
[21]   FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data [J].
David DeTomaso ;
Nir Yosef .
BMC Bioinformatics, 17
[22]   Decontamination of ambient RNA in single-cell RNA-seq with DecontX [J].
Shiyi Yang ;
Sean E. Corbett ;
Yusuke Koga ;
Zhe Wang ;
W Evan Johnson ;
Masanao Yajima ;
Joshua D. Campbell .
Genome Biology, 21
[23]   Decontamination of ambient RNA in single-cell RNA-seq with DecontX [J].
Yang, Shiyi ;
Corbett, Sean E. ;
Koga, Yusuke ;
Wang, Zhe ;
Johnson, W. Evan ;
Yajima, Masanao ;
Campbell, Joshua D. .
GENOME BIOLOGY, 2020, 21 (01)
[24]   Gene Selection for Single-cell RNA-seq Data Based on Information Gain and Genetic Algorithm [J].
Zhang, Jie ;
Feng, Junhong .
2018 14TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2018, :57-61
[25]   Robustness of single-cell RNA-seq for identifying differentially expressed genes [J].
Yong Liu ;
Jing Huang ;
Rajan Pandey ;
Pengyuan Liu ;
Bhavika Therani ;
Qiongzi Qiu ;
Sridhar Rao ;
Aron M. Geurts ;
Allen W. Cowley ;
Andrew S. Greene ;
Mingyu Liang .
BMC Genomics, 24
[26]   Data-driven selection of analysis decisions in single-cell RNA-seq trajectory inference [J].
Dong, Xiaoru ;
Leary, Jack R. ;
Yang, Chuanhao ;
Brusko, Maigan A. ;
Brusko, Todd M. ;
Bacher, Rhonda .
BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
[27]   Robustness of single-cell RNA-seq for identifying differentially expressed genes [J].
Liu, Yong ;
Huang, Jing ;
Pandey, Rajan ;
Liu, Pengyuan ;
Therani, Bhavika ;
Qiu, Qiongzi ;
Rao, Sridhar ;
Geurts, Aron M. ;
Cowley Jr, Allen W. ;
Greene, Andrew S. ;
Liang, Mingyu .
BMC GENOMICS, 2023, 24 (01)
[28]   Non-linear Normalization for Non-UMI Single Cell RNA-Seq [J].
Wu, Zhijin ;
Su, Kenong ;
Wu, Hao .
FRONTIERS IN GENETICS, 2021, 12
[29]   Identifying Cell Subpopulations and Their Genetic Drivers from Single-Cell RNA-Seq Data Using a Biclustering Approach [J].
Shi, Funan ;
Huang, Haiyan .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2017, 24 (07) :663-674
[30]   Review of single-cell RNA-seq data clustering for cell-type identification and characterization [J].
Zhang, Shixiong ;
Li, Xiangtao ;
Lin, Jiecong ;
Lin, Qiuzhen ;
Wong, Ka-Chun .
RNA, 2023, 29 (05) :517-530