Resistant Fit Regression Normalization for Single-cell RNA-seq Data

被引:0
作者
Kuang, Da [1 ]
Kim, Junhyong [2 ]
机构
[1] Univ Penn, Dept Comp & Informat Sci, 200 S 33Rd St, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
来源
2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020) | 2020年
关键词
Single-cell; RNA-seq; Normalization; Robust Regression; Resistant Fit;
D O I
10.1109/BIBE50027.2020.00046
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
All mRNA quantification, including single-cell mRNA sequencing, requires normalization to correct for technical variation and to make measurements of two or more samples comparable. The choice of normalization method impacts the downstream analysis. All common approaches (applying scaling factors, variational inference, and quantile regression) currently focus on removing technical variations but ignore localized variations of biological origin. To address this problem, we propose a new framework to normalize for technical effects while also aligning RNA-seq datasets for a biologically meaningful comparison. We present an iterative optimization method using the notion of a resistant fit regression to isolate localized perturbations. Both simulated data and real data are resistant-fit normalized and compared with popular normalization methods. This comparison shows that the resistant fit works better under localized biological variations.
引用
收藏
页码:236 / 240
页数:5
相关论文
共 50 条
[11]   ascend: R package for analysis of single-cell RNA-seq data [J].
Senabouth, Anne ;
Lukowski, Samuel W. ;
Hernandez, Jose Alquicira ;
Andersen, Stacey B. ;
Mei, Xin ;
Nguyen, Quan H. ;
Powell, Joseph E. .
GIGASCIENCE, 2019, 8 (08)
[12]   Evaluating imputation methods for single-cell RNA-seq data [J].
Yi Cheng ;
Xiuli Ma ;
Lang Yuan ;
Zhaoguo Sun ;
Pingzhang Wang .
BMC Bioinformatics, 24
[13]   Evaluating imputation methods for single-cell RNA-seq data [J].
Cheng, Yi ;
Ma, Xiuli ;
Yuan, Lang ;
Sun, Zhaoguo ;
Wang, Pingzhang .
BMC BIOINFORMATICS, 2023, 24 (01)
[14]   Current annotation strategies for T cell phenotyping of single-cell RNA-seq data [J].
Mullan, Kerry A. ;
de Vrij, Nicky ;
Valkiers, Sebastiaan ;
Meysman, Pieter .
FRONTIERS IN IMMUNOLOGY, 2023, 14
[15]   Assessment of Single Cell RNA-Seq Normalization Methods [J].
Ding, Bo ;
Zheng, Lina ;
Wang, Wei .
G3-GENES GENOMES GENETICS, 2017, 7 (07) :2039-2045
[16]   Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization [J].
Zhu, Xun ;
Ching, Travers ;
Pan, Xinghua ;
Weissman, Sherman M. ;
Garmire, Lana .
PEERJ, 2017, 5
[17]   An Integrated Approach for RNA-seq Data Normalization [J].
Yang, Shengping ;
Mercante, Donald E. ;
Zhang, Kun ;
Fang, Zhide .
CANCER INFORMATICS, 2016, 15 :129-141
[18]   Single-Cell RNA-Seq Technologies and Related Computational Data Analysis [J].
Chen, Geng ;
Ning, Baitang ;
Shi, Tieliu .
FRONTIERS IN GENETICS, 2019, 10
[19]   Processing single-cell RNA-seq datasets using SingCellaR [J].
Wang, Guanlin ;
Wen, Wei Xiong ;
Mead, Adam J. ;
Roy, Anindita ;
Psaila, Bethan ;
Thongjuea, Supat .
STAR PROTOCOLS, 2022, 3 (02)
[20]   FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data [J].
DeTomaso, David ;
Yosef, Nir .
BMC BIOINFORMATICS, 2016, 17