An accurate approximation of zeta-generalized-Euler-constant functions

被引:4
作者
Lampret, Vito [1 ]
机构
[1] Univ Ljubljana, Ljubljana, Slovenia
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2010年 / 8卷 / 03期
关键词
Alternating; Convergence acceleration; Estimate; Generalized-Euler-constant-function; Inequality; Series; Zeta;
D O I
10.2478/s11533-010-0030-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Zeta-generalized-Euler-constant functions, gamma(s) := Sigma(infinity)(k=1) (1/k(s) - integral(k+1)(k) dx/x(s)) and (gamma) over tilde (s) := Sigma(infinity)(k=1)(-1)(k+1) (1/k(s) - integral(k+1)(k) dx/x(s)), defined on the closed interval [0, infinity), where gamma(1) is the Euler-Mascheroni constant and (gamma) over tilde (1) = ln 4/pi, are studied and estimated with high accuracy.
引用
收藏
页码:488 / 499
页数:12
相关论文
共 9 条