Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors

被引:316
作者
Sun, Jinfeng [1 ,2 ]
Wu, Chen [1 ]
Sun, Xiaofei [1 ]
Hu, Hong [2 ]
Zhi, Chunyi [3 ]
Hou, Linrui [1 ]
Yuan, Changzhou [1 ]
机构
[1] Univ Jinan, Sch Mat Sci & Engn, Jinan 250022, Peoples R China
[2] Hong Kong Polytech Univ, Inst Text & Clothing, 11 HongChong Rd, Hong Kong, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Dept Phys & Mat Sci, 83 Tat Chee Ave, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
WALLED CARBON NANOTUBE; COBALT OXIDE ELECTRODES; REDUCED GRAPHENE OXIDE; SHELL NANOWIRE ARRAYS; STAINLESS-STEEL MESH; HIGH-PERFORMANCE; SOLID-STATE; METAL-OXIDE; LOW-COST; ELECTROCHEMICAL CAPACITANCE;
D O I
10.1039/c7ta00932a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, asymmetric supercapacitors (ASCs) have attracted extensive research interest worldwide for their potential application in emerging energy-related fields. The smart integration of high overall cell operating voltage and large capacitance can be realized in all-pseudocapacitive-electrode-materials-based ASCs. This innovative all-pseudocapacitive-asymmetric design provides a fascinating way to obtain high-energy-density devices with high power rates and also holds huge potential to bridge the gap between dielectric capacitors and rechargeable batteries. In the present review, we mainly summarized the latest contributions and progress in aqueous/non-aqueous faradaic electrode materials including conductive polymers and/or transition metal oxides/sulfides/nitrides/carbides, the operating principles, system design/engineering, and the rational optimization of all-pseudocapacitive ASCs. The intrinsic advantages and disadvantages of these unique ASCs have been elaborately discussed and comparatively evaluated. Finally, some future trends, prospects, and challenges, especially in rate capability and cycling stability, have been presented for advanced next-generation ASCs.
引用
收藏
页码:9443 / 9464
页数:22
相关论文
共 220 条
[1]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/NNANO.2015.40, 10.1038/nnano.2015.40]
[2]  
Agnese D. Y., 2014, ELECTROCHEM COMMUN, V48, P118
[3]   Green and all-carbon asymmetric supercapacitor based on polyaniline nanotubes and anthraquinone functionalized porous nitrogen-doped carbon nanotubes with high energy storage performance [J].
An, Ning ;
An, Yufeng ;
Hu, Zhongai ;
Zhang, Yadi ;
Yang, Yuying ;
Lei, Ziqiang .
RSC ADVANCES, 2015, 5 (78) :63624-63633
[4]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[5]   Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor [J].
Anothumakkool, Bihag ;
Soni, Roby ;
Bhange, Siddheshwar N. ;
Kurungot, Sreekumar .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (04) :1339-1347
[6]   Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
CHEMICAL REVIEWS, 2014, 114 (23) :11619-11635
[7]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[8]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[9]   Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors [J].
Bao, Shu-Juan ;
Li, Chang Ming ;
Guo, Chun-Xian ;
Qiao, Yan .
JOURNAL OF POWER SOURCES, 2008, 180 (01) :676-681
[10]   Electrospun α-Fe2O3 nanostructures for supercapacitor applications [J].
Binitha, G. ;
Soumya, M. S. ;
Madhavan, Asha Anish ;
Praveen, P. ;
Balakrishnan, A. ;
Subramanian, K. R. V. ;
Reddy, M. V. ;
Nair, Shantikumar V. ;
Nair, A. Sreekumaran ;
Sivakumar, N. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (38) :11698-11704