Hybrid finite element and Brownian dynamics method for charged particles

被引:2
|
作者
Huber, Gary A. [1 ]
Miao, Yinglong [1 ]
Zhou, Shenggao [2 ,3 ]
Li, Bo [4 ,5 ]
McCammon, J. Andrew [1 ,6 ,7 ]
机构
[1] Univ Calif San Diego, Howard Hughes Med Inst, La Jolla, CA 92093 USA
[2] Soochow Univ, Dept Math, 1 Shizi St, Suzhou 215006, Jiangsu, Peoples R China
[3] Soochow Univ, Math Ctr Interdiscipline Res, 1 Shizi St, Suzhou 215006, Jiangsu, Peoples R China
[4] Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Quantitat Biol Grad Program, 9500 Gilman Dr, La Jolla, CA 92093 USA
[6] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[7] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2016年 / 144卷 / 16期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
DIFFUSIVE REACTION-RATES; NEUROMUSCULAR-JUNCTION; ION CHANNELS; SIMULATIONS; ACETYLCHOLINESTERASE; ELECTRODIFFUSION; ALGORITHM; EQUATION; SYSTEMS; SURFACE;
D O I
10.1063/1.4947086
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Diffusion is often the rate-determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. A previous study introduced a new hybrid diffusion method that couples the strengths of each of these two methods, but was limited by the lack of interactions among the particles; the force on each particle had to be from an external field. This study further develops the method to allow charged particles. The method is derived for a general multidimensional system and is presented using a basic test case for a one-dimensional linear system with one charged species and a radially symmetric system with three charged species. Published by AIP Publishing.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Hybrid finite element and Brownian dynamics method for diffusion-controlled reactions
    Bauler, Patricia
    Huber, Gary A.
    McCammon, J. Andrew
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (16):
  • [2] DYNAMICS OF CHARGED AND CONDUCTING DROPS VIA THE HYBRID FINITE-BOUNDARY ELEMENT METHOD
    PELEKASIS, NA
    TSAMOPOULOS, JA
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 1995, 15 (04) : 339 - 348
  • [3] Brownian dynamics simulation of the crystallization dynamics of charged colloidal particles
    Gu, Lingyun
    Xu, Shenghua
    Sun, Zhiwei
    Wang, Jin Tong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2010, 350 (02) : 409 - 416
  • [4] Brownian dynamics of charged particles in a constant magnetic field
    Hou, L. J.
    Miskovic, Z. L.
    Piel, A.
    Shukla, P. K.
    PHYSICS OF PLASMAS, 2009, 16 (05)
  • [5] A BROWNIAN DYNAMICS METHOD FOR SYSTEMS OF NONSPHERICAL BROWNIAN PARTICLES
    KIM, DS
    LEE, SY
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 1990, 11 (02) : 127 - 131
  • [6] ON THE HYBRID-TYPE METHOD OF BROWNIAN DYNAMICS AND LATTICE BOLTZMANN FOR ACTIVATING THE BROWNIAN MOTION OF MAGNETIC PARTICLES
    Ito, Kana
    Satoh, Akira
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 7, PTS A-D, 2013, : 1101 - 1109
  • [7] A hybrid particle-finite element method for impact dynamics
    Zhang, Zhichun
    Qiang, Hongfu
    NUCLEAR ENGINEERING AND DESIGN, 2011, 241 (12) : 4825 - 4834
  • [8] Finite-element approach to Brownian dynamics of polymers
    Cyron, Christian J.
    Wall, Wolfgang A.
    PHYSICAL REVIEW E, 2009, 80 (06):
  • [9] A Brownian dynamics-finite element method for simulating DNA electrophoresis in nonhomogeneous electric fields
    Kim, Ju Min
    Doyle, Patrick S.
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (07):
  • [10] DYNAMICS OF BROWNIAN PARTICLES
    HARRIS, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1975, 8 (12): : L137 - L138