Real-space finite difference scheme for the von Neumann equation with the Dirac Hamiltonian

被引:3
作者
Schreilechner, Magdalena [1 ]
Poetz, Walter [1 ]
机构
[1] Karl Franzens Univ Graz, Inst Phys, Univ Pl 5, A-8010 Graz, Austria
关键词
Dirac equation; von Neumann equation; Finite-difference scheme; Staggered grid; Fermion doubling; Topological insulator;
D O I
10.1016/j.cpc.2016.03.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A finite difference scheme for the numerical treatment of the von Neumann equation for the (2 + 1)D Dirac Hamiltonian is presented. It is based on a sequential left-right (ket-bra) application of a staggered space-time scheme for the pure-state Dirac equation and offers a numerical treatment of the general mixed-state dynamics of an isolated quantum system within the von Neumann equation. Thereby this direct scheme inherits all the favorable features of the finite-difference scheme for the pure state Dirac equation, such as the single-cone energy-momentum dispersion, convergence conditions, and scaling behavior. A conserved functional is identified. Moreover this scheme is shown to conserve both Hermiticity and positivity. Numerical tests comprise a numerical analysis of stability, as well as the simulation of a mixed-state time-evolution of Gaussian wave functions, illustrating Zitterbewegung and transverse current oscillations. Imaginary-potential absorbing boundary conditions and parameters which pertain to topological insulator surface states were used in the numerical simulations. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:43 / 54
页数:12
相关论文
共 23 条
[1]  
Analytis J. G., 2010, PHYS REV B, V81
[2]  
Balescu R., 1975, Equilibrium and Non-Equilibrium Statistical Mechanics
[3]  
Breuer H.-P., 2007, The Theory of Open Quantum Systems
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :285-290
[6]  
Datta S., 1997, Electronic Transport in Mesoscopic Systems, DOI DOI 10.1063/1.2807624
[8]   Single-cone real-space finite difference scheme for the time-dependent Dirac equation [J].
Hammer, Rene ;
Poetz, Walter ;
Arnold, Anton .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 265 :50-70
[9]   A dispersion and norm preserving finite difference scheme with transparent boundary conditions for the Dirac equation in (1+1)D [J].
Hammer, Rene ;
Poetz, Walter ;
Arnold, Anton .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 256 :728-747
[10]   Colloquium: Topological insulators [J].
Hasan, M. Z. ;
Kane, C. L. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (04) :3045-3067