POLAR CREMONA TRANSFORMATIONS AND MONODROMY OF POLYNOMIALS

被引:2
作者
Ahmed, Imran [1 ]
机构
[1] Govt Coll Univ, Sch Math Sci, Lahore, Pakistan
关键词
Cremona transformation; gradient mapping; Milnor lattice; monodromy; tame polynomial;
D O I
10.1556/SScMath.2009.1114
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the gradient map associated to any non-constant homogeneous polynomial f is an element of C [x(0),..., x(n)] of degree d, defined by phi(f) = grad (f) : D(f) -> P-n, (x(0) : ... : x(n)) -> (f(0)(x) : ...: f(n)(x)) where D(f) = {x is an element of P-n; f (x) not equal 0} is the principal open set associated to f and f(i) = partial derivative f/partial derivative x(i). This map corresponds to polar Cremona transformations. In Proposition 3.4 we give a new lower bound for the degree d (f) of phi(f) under the assumption that the projective hypersurface V : f = 0 has only isolated singularities. When d (f) = 1, Theorem 4.2 yields very strong conditions on the singularities of V.
引用
收藏
页码:81 / 89
页数:9
相关论文
共 15 条
[1]  
[Anonymous], 1976, ALGEBRAIC GEOMETRY
[2]   CLASSIFICATION OF CUBIC SURFACES [J].
BRUCE, JW ;
WALL, CTC .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1979, 19 (APR) :245-256
[3]  
CHOUDARY A. D. R., 1994, KODAI MATH J, V17, P171
[4]   Homaloidal hypersurfaces and hypersurfaces with vanishing Hessian [J].
Ciliberto, Ciro ;
Russo, Francesco ;
Simis, Aron .
ADVANCES IN MATHEMATICS, 2008, 218 (06) :1759-1805
[5]   Hypersurface complements, Milnor fibers and higher homotopy groups of arrangments [J].
Dimca, A ;
Papadima, S .
ANNALS OF MATHEMATICS, 2003, 158 (02) :473-507
[6]   On the monodromy of complex polynomials [J].
Dimca, A ;
Némethi, A .
DUKE MATHEMATICAL JOURNAL, 2001, 108 (02) :199-209
[7]  
Dimca A., 1992, SINGULARITIES TOPOLO
[8]  
DIMCA A, 2001, AN ST U OVIDIUS CONS, V9, P47
[9]  
Dimca A., 1987, Topics on real and complex singularities. An introduction
[10]  
Dimca A., 2004, UNIVERSITEX