Minimal hypersurfaces with bounded index

被引:32
作者
Chodosh, Otis [1 ,2 ]
Ketover, Daniel [2 ]
Maximo, Davi [3 ,4 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge, England
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[4] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
MORSE INDEX; SURFACES; CURVATURE; EXISTENCE; REGULARITY; AREA; 3-MANIFOLDS; LAMINATIONS; COMPACTNESS; UNIQUENESS;
D O I
10.1007/s00222-017-0717-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a structural theorem that provides a precise local picture of how a sequence of closed embedded minimal hypersurfaces with uniformly bounded index (and volume if the ambient dimension is greater than three) in a Riemannian manifold (M-n, g), 3 <= n <= 7 can degenerate. Loosely speaking, our results show that embedded minimal hypersurfaces with bounded index behave qualitatively like embedded stable minimal hypersurfaces, up to controlled errors. Several compactness/finiteness theorems follow from our local picture.
引用
收藏
页码:617 / 664
页数:48
相关论文
共 58 条
[41]   THE EXISTENCE OF A BLACK-HOLE DUE TO CONDENSATION OF MATTER [J].
SCHOEN, R ;
YAU, ST .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 90 (04) :575-579
[42]   CURVATURE ESTIMATES FOR MINIMAL HYPERSURFACES [J].
SCHOEN, R ;
SIMON, L ;
YAU, ST .
ACTA MATHEMATICA, 1975, 134 (3-4) :275-288
[43]   EXISTENCE OF INCOMPRESSIBLE MINIMAL SURFACES AND THE TOPOLOGY OF THREE DIMENSIONAL MANIFOLDS WITH NONNEGATIVE SCALAR CURVATURE [J].
SCHOEN, R ;
YAU, ST .
ANNALS OF MATHEMATICS, 1979, 110 (01) :127-142
[44]  
SCHOEN R, 1982, ANN MATH STUD, P209
[45]   REGULARITY OF STABLE MINIMAL HYPERSURFACES [J].
SCHOEN, R ;
SIMON, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (06) :741-797
[46]  
SCHOEN R, 1983, ANN MATH STUD, P111
[47]  
SCHOEN RM, 1983, J DIFFER GEOM, V18, P791
[48]  
Sharp B., 2015, J DIFF GEOM
[49]   MINIMAL VARIETIES IN RIEMANNIAN MANIFOLDS [J].
SIMONS, J .
ANNALS OF MATHEMATICS, 1968, 88 (01) :62-&
[50]   A balancing condition for weak limits of families of minimal surfaces [J].
Traizet, M .
COMMENTARII MATHEMATICI HELVETICI, 2004, 79 (04) :798-825