Classification rule discovery with DE/QDE algorithm

被引:17
作者
Su, Haijun [1 ]
Yang, Yupu [1 ]
Zhao, Liang [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200030, Peoples R China
[2] E China Univ Sci & Technol, Minist Educ, Key Lab Adv Control & Optimizat Chem Proc, Shanghai 200237, Peoples R China
关键词
Classification; Quantum-inspired; Differential evolution; Data mining; Continuous attribute;
D O I
10.1016/j.eswa.2009.06.029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The quantum-inspired differential evolution algorithm (QDE) is a new optimization algorithm in the binary-valued space. The paper proposes the DE/QDE algorithm for the discovery of classification rules DE/QDE combines the characteristics of the conventional DE algorithm and the QDE algorithm. Based on some strategies of DE and QDE. DE/QDE can directly cope with the continuous, nominal attributes without discretizing the continuous attributes in the preprocessing step. DE/QDE also has specific weight mutation for managing the weight value of the individual encoding. Then DE/QDE is compared with Ant-Miner and CN2 on six problems from the LICI repository datasets. The results indicate that DE/QDE is competitive with Ant-Miner and CN2 in term of the predictive accuracy. (C) 2009 Elsevier Ltd All rights reserved.
引用
收藏
页码:1216 / 1222
页数:7
相关论文
共 23 条
[1]  
[Anonymous], 1997, Journal of Global Optimization, DOI DOI 10.1023/A:1008202821328
[2]   A novel evolutionary data mining algorithm with applications to churn prediction [J].
Au, WH ;
Chan, KCC ;
Yao, X .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (06) :532-545
[3]  
Blake C. L., 1998, Uci repository of machine learning databases
[4]   A case-based customer classification approach for direct marketing [J].
Chiu, CC .
EXPERT SYSTEMS WITH APPLICATIONS, 2002, 22 (02) :163-168
[5]   PRO-OPIOMELANOCORTIN MESSENGER-RNA SIZE HETEROGENEITY IN ACTH-DEPENDENT CUSHINGS-SYNDROME [J].
CLARK, AJL ;
LAVENDER, PM ;
BESSER, GM ;
REES, LH .
JOURNAL OF MOLECULAR ENDOCRINOLOGY, 1989, 2 (01) :3-9
[6]  
COLARD M, 2001, P IEEE C EV COMP, P3
[7]  
De Falco I., 2002, Applied Soft Computing, V1, P257, DOI 10.1016/S1568-4946(01)00024-2
[8]  
DEARAUJO DLA, 1999, P IEEE C SYST MAN CY, P940
[9]  
DEJONG KA, 1993, MACH LEARN, V13, P161, DOI 10.1007/BF00993042
[10]  
Fidelis MV, 2000, IEEE C EVOL COMPUTAT, P805, DOI 10.1109/CEC.2000.870381