Thermosetting polyurethane multiwalled carbon nanotube composites

被引:72
作者
McClory, Caroline
McNally, Tony
Brennan, Gerard P.
Erskine, James
机构
[1] Queens Univ Belfast, Sch Mech & Aerosp Engn, Belfast BT9 5AH, Antrim, North Ireland
[2] Queens Univ Belfast, Ctr Med Biol, Sch Biol Sci, Belfast BT9 7BL, Antrim, North Ireland
[3] Hamilton Erskine Ltd, Ballygowan BT23 6JQ, Newtownards, North Ireland
关键词
polyurethanes; carbon nanotubes; nanocomposites; mechanical properties; Raman spectroscopy;
D O I
10.1002/app.26144
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Thermosetting polyurethane (PU) multiwalled carbon nanotube (MWCNT) nanocomposites at loadings up to 1 wt% were prepared via an addition polymerization reaction. The morphology of the nanocomposites and degree of dispersion of the MWCNTs was studied using a combination of scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and wide angle X-ray diffraction (WAXD), and revealed the nanotubes to be highly dispersed in the PU matrix. Addition of just 0.1 wt % MWCNTs resulted in significant enhancements in stiffness, strength and toughness. Increases in Young's modulus, % elongation at break and ultimate tensile strength of 561, 302 and 397% were measured for the nanocomposites compared to the unfilled PU. The effect of the MWCNTs on the modulus of the PU was evaluated using the Rule of Mixtures, Krenchel and Halpin-Tsai models. Only the Halpin-Tsai model applied to high aspect ratio nanotubes was in good agreement with the modulus values determined experimentally. Strong interfacial shear stress was found between PU chains and nanotubes, up to 439 MPa, calculated using a modified Kelly-Tyson model. Evidence for strong interfacial interactions was obtained from the Raman spectra of both the precursor materials and nanocomposites. When the MWCNTs were added to the isophorone diisocyanate an up-shift of 14 cm(-1) and on average 40 cm(-1) was obtained for the position of the carbon-hydrogen (C-H) out-of plane bending (766 cm(-1)) and isocyanate symmetric stretch (1420 cm(-1)) modes respectively. Moreover, an up-shift of 24 cm(-1) was recorded for the nanotube tangential mode (G-band) for the 1.0 wt % nanocomposite because of the compressive forces of the PU matrix acting on the MWCNTs. The dynamic mechanical (DMA) properties of the PU thermoset and the nanocomposites were measured as a function of temperature. (c) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:1003 / 1011
页数:9
相关论文
共 43 条
[1]   Carbon nanotube polymer composites [J].
Andrews, R ;
Weisenberger, MC .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2004, 8 (01) :31-37
[2]   Evidence of the reinforcement role of chemical vapour deposition multi-walled carbon nanotubes in a polymer matrix [J].
Bai, J .
CARBON, 2003, 41 (06) :1325-1328
[3]   Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites - experimental investigation [J].
Bai, JB ;
Allaoui, A .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2003, 34 (08) :689-694
[4]   DC and AC conductivity of carbon nanotubes-polyepoxy composites [J].
Barrau, S ;
Demont, P ;
Peigney, A ;
Laurent, C ;
Lacabanne, C .
MACROMOLECULES, 2003, 36 (14) :5187-5194
[5]   Characterization methods of carbon nanotubes: a review [J].
Belin, T ;
Epron, F .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2005, 119 (02) :105-118
[6]   Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite [J].
Bhattacharyya, AR ;
Sreekumar, TV ;
Liu, T ;
Kumar, S ;
Ericson, LM ;
Hauge, RH ;
Smalley, RE .
POLYMER, 2003, 44 (08) :2373-2377
[7]   Carbon nanotube composites for thermal management [J].
Biercuk, MJ ;
Llaguno, MC ;
Radosavljevic, M ;
Hyun, JK ;
Johnson, AT ;
Fischer, JE .
APPLIED PHYSICS LETTERS, 2002, 80 (15) :2767-2769
[8]   Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing [J].
Choi, ES ;
Brooks, JS ;
Eaton, DL ;
Al-Haik, MS ;
Hussaini, MY ;
Garmestani, H ;
Li, D ;
Dahmen, K .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (09) :6034-6039
[9]   Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites [J].
Coleman, Jonathan N. ;
Khan, Umar ;
Blau, Werner J. ;
Gun'ko, Yurii K. .
CARBON, 2006, 44 (09) :1624-1652
[10]   Detachment of nanotubes from a polymer matrix [J].
Cooper, CA ;
Cohen, SR ;
Barber, AH ;
Wagner, HD .
APPLIED PHYSICS LETTERS, 2002, 81 (20) :3873-3875