A Hilbert's Type Inequality With Three Parameters

被引:1
作者
Xi, Gaowen [1 ]
机构
[1] Chongqing Univ Sci & Technol, Dept Math, Chongqing 401331, Peoples R China
关键词
Hilbert's type inequality; weight coefficient; Holder's inequality; Riemann zeta function; generalizations;
D O I
10.2298/FIL1913165X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by introducing three parameters A, B, alpha and using the Euler-Maclaurin expansion for the Riemann zeta function, we establish an inequality of a weight coefficient. Using this inequality, we derive generalizations of a Hilbert's type inequality.
引用
收藏
页码:4165 / 4173
页数:9
相关论文
共 11 条
  • [1] Hardy G.H., 1959, Inequalities
  • [2] Knopp K., 1928, THEORY APPL INFINITE, ppp. 290
  • [3] Krnic M, 2005, MATH INEQUAL APPL, V8, P29
  • [4] Kuang JC, 2000, J MATH ANAL APPL, V245, P248
  • [5] A GENERALIZATION OF THE HILBERT'S TYPE INEQUALITY
    Xi, Gaowen
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (04): : 1501 - 1510
  • [6] ON GENERALIZATIONS AND REINFORCEMENTS OF A HILBERT'S TYPE INEQUALITY
    Xi, Gaowen
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (01) : 329 - 337
  • [7] Yang B., 2005, Journal of Inequalities in Pure and Applied Mathematics, V6, P1
  • [8] Yang B., 1997, ACTA SCI NAT UNIV S, V36, P30
  • [9] Yang B., 1999, ACTA MATH SIN, V42, P1103
  • [10] A new Hilbert-type inequality
    Yang, Bicheng
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 13 (03) : 479 - 487